Читаем Тонкая физика. Масса, эфир и объединение всемирных сил полностью

Чтобы получить нужное решение, Эйнштейн изменил уравнения. Однако он изменил их очень специфическим способом, который не испортил их лучшую характеристику, а именно, описание гравитации в соответствии со специальной теорией относительности. По сути, существует только один способ это сделать. Эйнштейн назвал добавленный в уравнения для гравитации член «космологическим членом». На самом деле он не предлагал его физической интерпретации, однако современная физика предоставила отличную интерпретацию, о которой мы поговорим далее.

Мотивация Эйнштейна для добавления космологического члена, необходимого для описания статической Вселенной, вскоре устарела, когда в 1920-е годы в основном благодаря работе Эдвина Хаббла появились свидетельства расширения Вселенной. Эйнштейн называл идеи, которые не позволили ему предсказать расширение Вселенной, своим «величайшим промахом». (И это действительно был промах, поскольку созданная им модель Вселенной даже с новыми уравнениями являлась нестабильной. Строго однородная плотность является решением, однако любое малое нарушение однородности со временем увеличивается). Тем не менее выявленная им возможность добавления нового члена в уравнения общей теории относительности без ее ухудшения оказалась пророческой.

Космологический член можно рассматривать двумя способами. Выражения E = mc2 и m = Е / с2 математически эквивалентны, но они предполагают различные интерпретации. Эйнштейн рассматривал его в качестве модификации закона тяготения. Кроме того, этот член также можно рассматривать как эффект наличия постоянной плотности массы, а также постоянного давления во всем пространстве и во все времена. Поскольку эта масса-плотность и давление повсюду имеют одинаковое значение, они могут рассматриваться в качестве свойства, внутренне присущего самому пространству. Эта точка зрения соответствует концепции Сетки. Если мы примем как данность то, что пространство обладает этими свойствами, и сосредоточимся исключительно на последствиях, связанных с гравитацией, то мы вернемся к воззрению Эйнштейна.

Ключевое отношение, регулирующее физику космологического члена, соотносит его плотность с давлением р, которое он оказывает, используя скорость света с. Для этого уравнения нет стандартного названия, однако оно бы нам не помешало. Я буду называть его хорошо темперированным уравнением, поскольку оно предписывает правильный способ настройки Сетки. Хорошо темперированное уравнение выглядит так:

= –р / с2.

Откуда оно взялось? Что оно значит?

Хорошо темперированное уравнение выглядит как мутировавший клон второго закона Эйнштейна, m = Е / с2: m превратилось в , а Е — в р, там, правда, еще есть знак «», однако сходство очевидно. И на самом деле они глубоко связаны между собой.

Второй закон Эйнштейна связывает энергию изолированного тела в состоянии покоя с его массой (см. главу 3 и приложение А). Это является следствием специальной теории относительности, хотя и не сразу очевидным. На самом деле о нем не упоминалось в первой работе Эйнштейна по теории относительности; он написал отдельную заметку об этом позднее.

Хорошо темперированное уравнение также является следствием специальной теории относительности, однако применяемой теперь к однородной заполняющей пространство сущности, а не к изолированному телу. Не сразу становится ясно, как ненулевая плотность Сетки может согласовываться со специальной теорией относительности. Чтобы оценить эту проблему, подумайте о знаменитом сокращении Фицджеральда — Лоренца, которое мы упомянули в главе 6. Наблюдателю, движущемуся с постоянной скоростью, объекты кажутся сжатыми в направлении движения. Таким образом, можно было бы подумать, что движущийся наблюдатель видит более высокую плотность Сетки. Это противоречит буст-симметрии теории относительности, в соответствии с которой для этого наблюдателя должны действовать те же самые физические законы.

Давление, которое сопровождает плотность, согласно хорошо темперированному уравнению дает лазейку. Весы движущегося наблюдателя в соответствии с уравнениями специальной теории относительности регистрируют новую плотность, которая представляет собой смесь прежней плотности и прежнего давления, подобно тому как его часы регистрируют временные интервалы, которые представляют собой смесь прежних временных и прежних пространственных интервалов. Если — и только если — прежняя плотность и прежнее давление связаны именно так, как это предписывается хорошо темперированным уравнением, значения новой плотности (и нового давления) будут равны прежним значениям.

Перейти на страницу:

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг