Другое, тесно связанное с вышеописанным, следствие хорошо темперированного уравнения имеет центральное значение для космологии плотности Сетки. В расширяющейся Вселенной плотность материи любого нормального вида будет уменьшаться. Однако плотность хорошо темперированной Сетки остается неизменной! Если вы хотите выполнить небольшое упражнение из начального курса физики и алгебры, вот довольно симпатичное соотношение, связывающее это постоянство плотности непосредственно со вторым законом Эйнштейна. (Если нет, просто пропустите следующий абзац.)
Рассмотрим объем пространства
Каждый из описанных ранее компонентов Сетки — разнообразные флуктуирующие квантовые поля, кварковый конденсат QQ–, конденсат Хиггса, конденсат объединения-сохранения (unification-salvaging condensate), пространственно-временное метрическое поле (или конденсат?) — является хорошо уравновешенным. Каждая из этих заполняющих пространство сущностей подчиняется хорошо темперированному уравнению, поскольку все они согласуются с буст-симметрией специальной теории относительности.
Можно отдельно измерить космическую плотность и давление, используя совершенно другие способы. Плотность влияет на искривление пространства, которое астрономы могут измерить, изучая обусловленные этой кривизной искажения в изображениях далеких галактик или используя мощную новую технику, связанную с изучением космического микроволнового фонового излучения. C помощью новой техники к 2001 году нескольким группам удалось доказать, что во Вселенной содержится намного больше массы, чем может быть приписано только обычной материи. Около 70 % от общей массы, по-видимому, очень равномерно распределено в пространстве и во времени.
Давление влияет на скорость расширения Вселенной. Эта скорость может быть измерена путем изучения далеких сверхновых. Их яркость говорит, как далеко они находятся, а красное смещение их спектральных линий сообщает, насколько быстро они удаляются от нас. Поскольку скорость света конечна, наблюдая дальние сверхновые, мы видим их прошлое. Таким образом, мы можем использовать сверхновые, чтобы восстановить историю расширения Вселенной. В 1998 году две команды наблюдателей-энтузиастов сообщили, что скорость расширения Вселенной увеличивается. Это было большой неожиданностью, поскольку обычное гравитационное притяжение имеет тенденцию сдерживать расширение. Обнаруживались некоторые новые эффекты. Простейшим объяснением является универсальное отрицательное давление, способствующее расширению.
Термин
Является ли астрономическое открытие того, что пространство имеет вес и, по-видимому, подчиняется хорошо темперированному уравнению, блестящим подтверждением существования глубинных структур, на основе которых мы строим наши лучшие картины мира? И да и нет. Если честно, то, наверное, мне следует написать и да и НЕТ.
Проблема заключается в том, что определенная астрономами суммарная плотность гораздо, гораздо меньше приблизительных значений любого из наших конденсатов. Далее приведены приблизительные значения плотностей в виде кратных тому, что обнаружили астрономы:
• конденсат, состоящий из пар «кварк — антикварк» — 1044;
• слабый сверхпроводящий конденсат — 1056;
• единый сверхпроводящий конденсат — 10112;
• квантовые флуктуации без суперсимметрии — ∞;
• квантовые флуктуации с суперсимметрией[34] — 1060;
• пространственно-временная метрика — ? (В данном случае физика слишком туманна для приблизительных оценок.)
Если бы какое-либо из этих приблизительных значений было правильным, то эволюция Вселенной происходила бы гораздо более быстрыми темпами по сравнению с тем, что мы наблюдаем.