Но по мере усложнения развития математики ученые-математики часто формулировали совершенно абстрактные математические задачи. Предположим, говорили они, что имеют место такие-то и такие-то обстоятельства, такие-то и такие-то условия и ограничения. Как в таком случае можно решить данную задачу? При этом математики часто не задумывались о прямом и непосредственном применении своих результатов к действительности. Их целью было разработать строгие, точные и непротиворечивые правила, позволяющие чисто формальным путем решать все однотипные задачи данного вида. Когда намеченная ими цель оказывалась достигнутой, это означало, что им удалось построить ту или иную математическую дисциплину, тот или иной раздел математики, то есть создать формальное математическое исчисление.
Ученый — физик, механик или астроном — сталкивался с практической, физической, механической или астрономической задачей, и если оказывалось, что взаимодействие объектов, набор условий и ограничений в этих практических задачах был в достаточной степени схож с абстрактными объектами, условиями и ограничениями, о которых размышляли математики, то естествоиспытатели охотно брали из арсенала математики уже готовое, проверенное математическое оружие — наборы готовых правил и формул.
Таким образом, в физическую теорию попадали математические структуры.
Именно так случилось в Новейшее время с алгеброй групп, с неевклидовой геометрией и др. Математики и даже физики XIX века думали, например, что эти разделы математики — чистая игра воображения, которая никогда не найдет себе практического применения. Когда, однако, уже в нашем столетии стали развиваться специальная теория относительности и квантовая механика,оказалось, что для формулировки их законов эти математические дисциплины дают готовый, хорошо разработанный математический аппарат.
Таким образом, математические структуры, находящие применение при построении научной теории, используемые для ее формулирования, уточнения, развития и совершенствования, образуют математическую модель научной теории.
В математические уравнения, как вы знаете, входят символы, обозначающие различные абстрактные переменные, и символы тех или иных математических операций. Поэтому сами по себе такие уравнения ничего не говорят об объективном мире. Для того чтобы они превратились в конкретную научную теорию, соответствующие символы должны обрести тот или иной физический, механический или астрономический смысл, получить определенное эмпирическое значение. Процедура предания формальному математическому аппарату конкретного научного смысла называется интерпретацией данной математической модели теории. Для этого необходимо использовать набор основных понятий данной науки, входящих в ее фундаментальные законы.
Возьмем для примера самое простое арифметическое выражение:
Набор основных понятий и правил интерпретации, с помощью которых данные понятия включаются в состав математических выражений, превращая их тем самым в выражения физики, механики, астрономии и т. п., называются теоретической моделью данной теории. Теперь вам становится более понятной и та классификация моделей, о которой мы уже говорили.
Сейчас очень важно, чтобы вы ясно поняли, что ни математическая модель, ни теоретическая модель еще не образуют взятые порознь научные теории. Однако выделение этих двух важных подсистем позволяет нам сделать некоторые важные выводы. Оказывается, что различные по своему содержанию теории могут иметь одинаковые в известных границах математические модели. Так, например, уравнение кинетической теории газов*и уравнение механической теории, рассматривающей соударение абсолютно упругих шариков исчезающе малых размеров, сходны по своей математической природе, то есть по формальным свойствам. Точно так же в известных границах сходны уравнения гидродинамики и классической электродинамики.
Из этого, между прочим, следует, что различные в содержательном смысле теории могут иметь одинаковую математическую структуру, что и в основе их лежйт одна и та же математическая модель.