Применение статистических методов и понятие статистической или эмпирической вероятности иногда приводит к настоящим открытиям. Именно так случилось в опытах основоположника современной генетики — науки о биологической наследственности Грегора Менделя. Мендель занимался гибридизацией двух сортов гороха, различавшихся лишь небольшим числом признаков. Выделив один из них — форму горошин (одни были гладкими, другие морщинистыми), Мендель заметил, что гибриды, полученные в результате взаимного опыления двух сортов гороха, состояли исключительно из гладких горошин. Однако следующее поколение, полученное из гладких семян, отличалось удивительной особенностью. Статистический подсчет показал, что из 7324 семян второго поколения 3474 оказались гладкими, а 1830 — морщинистыми. Хотя в любых двух произвольно взятых стручках горошины распределялись как попало, статистический расчет обнаружил довольно четко выраженную количественную закономерность: гладких горошин было почти в три раза больше, чем морщинистых.
Мендель, в отличие от большинства биологов XIX века, хорошо знавший математику, предположил, что законы наследственности подчиняются точным количественным соотношениям и опубликовал свои соображения в 1865 году. Его открытие было столь неожиданным, что в течение почти тридцати пяти лет не получило почти никакого отклика в научной литературе. Лишь в XX веке биологи смогли полностью оценить важность количественных методов в биологических исследованиях. Однако даже после открытия структуры ДНК из генетики не удалось устранить вероятностные статистические оценки. И сейчас мы можем лишь с высокой вероятностью предсказать, сколько мальчиков и девочек родится в следующем году в Москве, Хабаровске, Амстердаме или Токио, какие признаки унаследуют гибриды таких-то и таких-то растений или животных и т. д.
Как бы ни были точны наши предсказания, опирающиеся теперь не на догадки, а на объективную истину, касающуюся молекулярной структуры ДНК, на ясное знание механизмов размножения и развития животных и растений, мы вынуждены признать, что известная доля неопределенности заложена, по-види-мому, в самой природе, в самой организации передачи наследственных признаков.
Еще одно подтверждение объективного характера некоторых видов неопределенности мы легко обнаруживаем, рассматривая сложные системы типа большого города. Вы хорошо знаете, что безопасность уличного движения зависит не только от числа пешеходов, транспортных средств, светофоров и регулировщиков, но и от взаимного расположения улиц, перекрестков, подземных и наземных переходов —иными словами, безопасность зависит не только от элементов систем, но и от ее пространственной структуры.
Эти факторы хотя и поддаются учету, не являются единственными причинами, полностью определяющими безопасность движения. Необходимо учитывать еще, насколько хорошо известны правила уличного движения пешеходам и водителям, насколько они готовы соблюдать эти правила, и, наконец, психологическое состояние людей, освещение улиц, состояние светофоров, переходных полос и многое другое. Даже самые быстродействующие ЭВМ, получающие максимально полную информацию о состоянии транспортных магистралей, о движении транспорта и пешеходных потоков, не могут с полной определенностью оценить состояние транспортных систем одновременно во всех частях города. Они могут дать такую оценку лишь с известной вероятностью. Поэтому диспетчер (человек или автомат), регулируя движение в городе, принимает решение, опирающееся на более или менее вероятную информацию. Чем больше неопределенность в той или иной ситуации, тем менее вероятными, менее надежными являются наши знания. Наоборот, чем меньше неопределенность, тем выше значение вероятности.
Когда все причины и следствия, все временные и пространственные характеристики, все сведения об элементах и структурах систем совершенно определенны, безукоризненно точны, тогда вероятность переходит в достоверность — в исчерпывающе полную, абсолютную истину.
Нетрудно заметить, что истины такого рода достижимы лишь в самых простых случаях, когда чрезвычайно мало число элементов и структур системы, когда требования к точности измерений и вычислений невысоки, а сама познавательная задача относится скорее к абстрактной упрощенной модели, а не к самой действительности.
Вот почему один из создателей системного подхода биолог Людвиг Берталанфи как-то сказал, что все законы природы носят статистический, вероятностный характер.
Теперь мы могли бы указать основные виды неопределенности, с которыми приходится иметь дело ученым:
1. Неопределенность, связанная со статистическим характером объективных законов природы. Неопределенность этого рода неустранима и не зависит от степени нашей неосведомленности о тех или иных явлениях.
2. Неопределенность, зависящая от недостаточно полной информированности. Причиной ее могут быть, по крайней мере, три обстоятельства.