127
. Так как нет такого большого числа частей, чтобы не могло быть линии, которая содержала бы их еще более, то говорится, что линия в дюйм длиной содержит частей более всякого данного их числа, что справедливо, но относительно не дюйма, как такового, а только того, что им обозначается. Но люди, не соблюдая этого различия в своих мыслях, подпадают под убеждение, будто небольшая данная линия, начертанная на бумаге, заключает как таковая, бесконечное число частей. Нет такой вещи, как десятитысячная часть128
. Из сказанного ясно, почему для сообщения теоремам всеобщего применения мы должны говорить о начертанных на бумаге линиях так, как будто они содержат части, которых в действительности не имеют. Поступая таким образом, мы при точном исследовании найдем, быть может, что не в состоянии представить себе сам дюйм состоящим из тысячи частей или делимым на тысячу частей, а относим это представление к некоторой другой линии, которая гораздо больше дюйма и обозначается им, и что, говоря, будто линия129
. Многочисленные нелепости и противоречия, вытекающие из этого ложного принципа, могли бы каждое служить, как представляется, доводами против него. Но я не знаю, на основании какой130
. Умозрения относительно бесконечных величин достигли в новейшее время таких размеров и выродились в столь странные понятия, что послужили поводом к немалым сомнениям и спорам среди современных геометров. Некоторые из них, имеющие громкое имя, не довольствуются мнением, будто конечные линии могут быть делимы на бесконечное число частей, но утверждают далее, что каждая из этих бесконечно малых частей в свою очередь делима на бесконечное число других частей или бесконечно малых величин второго порядка, и т.д. ad infinitum. Они утверждают, говорю я, что существуют бесконечно малые части бесконечно малых частей и т. д. без конца; так что, по их мнению, один дюйм содержит не только бесконечное число частей, но бесконечность бесконечности частей ad iufinitum. Другие утверждают, что все порядки бесконечно малых величин ниже первого порядка суть ничто, основательно считая нелепым предположение, будто существует какое-либо положительное количество или часть протяжения, которая, даже будучи бесконечно умноженной, никогда не сравнится с наименьшим данным протяжением. А, с другой стороны, не менее нелепым кажется мнение, будто квадрат, куб или другая степень положительного реального основания есть, как таковая, ничто, как это должны утверждать те, которые признают бесконечно малые величины первого порядка, отрицая высшие их порядки.