Читаем Трактат о принципах человеческого знания (ЛП) полностью

127. Так как нет такого большого числа частей, чтобы не могло быть линии, которая содержала бы их еще более, то говорится, что линия в дюйм длиной содержит частей более всякого данного их числа, что справедливо, но относительно не дюйма, как такового, а только того, что им обозначается. Но люди, не соблюдая этого различия в своих мыслях, подпадают под убеждение, будто небольшая данная линия, начертанная на бумаге, заключает как таковая, бесконечное число частей. Нет такой вещи, как десятитысячная часть дюйма, но есть десятитысячная часть мили или диаметра земли, которые могут быть обозначены этим дюймом. Когда я поэтому черчу на бумаге треугольник и приму величину одной из его сторон, которая не длиннее дюйма, равной радиусу (Земли), то я предполагаю ее разделенной на десять, на сто и более тысяч частей; ибо хотя десятитысячная часть этой линии, рассматриваемая сама по себе, есть ничто и ею, следовательно, можно пренебречь без всякой погрешности или неудобства, но так как эти начертанные линии суть лишь знаки, заменяющие большие величины, десятитысячная часть которых может быть весьма значительная, то отсюда следует, что во избежание заметных ошибок на практике радиус должен быть признан содержащим в себе 10 000 или более частей.

128. Из сказанного ясно, почему для сообщения теоремам всеобщего применения мы должны говорить о начертанных на бумаге линиях так, как будто они содержат части, которых в действительности не имеют. Поступая таким образом, мы при точном исследовании найдем, быть может, что не в состоянии представить себе сам дюйм состоящим из тысячи частей или делимым на тысячу частей, а относим это представление к некоторой другой линии, которая гораздо больше дюйма и обозначается им, и что, говоря, будто линия делима до бесконечности, мы подразумеваем (если только действительно что-либо подразумеваем) бесконечно большую линию. В сказанном заключается, по-видимому, главная причина того, почему в геометрии признается необходимым предположение бесконечной делимости конечного протяжения.

129. Многочисленные нелепости и противоречия, вытекающие из этого ложного принципа, могли бы каждое служить, как представляется, доводами против него. Но я не знаю, на основании какой логики признается, что доказательства a posteriori не допустимы против положений, касающихся бесконечности, как будто даже бесконечный дух не в состоянии разрешить противоречия или будто что-либо нелепое и противоречивое может быть в необходимой связи с истиной или вытекать из нее. Но если кто бы то ни было рассмотрит шаткость этого притязания, то он придет к мысли, что оно было изобретено в угоду вялости ума, которому более приятно успокоиться на ленивом скептицизме, чем взять на себя труд подвергнуть строгому исследованию те принципы, которые он постоянно признавал за истинные.

130. Умозрения относительно бесконечных величин достигли в новейшее время таких размеров и выродились в столь странные понятия, что послужили поводом к немалым сомнениям и спорам среди современных геометров. Некоторые из них, имеющие громкое имя, не довольствуются мнением, будто конечные линии могут быть делимы на бесконечное число частей, но утверждают далее, что каждая из этих бесконечно малых частей в свою очередь делима на бесконечное число других частей или бесконечно малых величин второго порядка, и т.д. ad infinitum. Они утверждают, говорю я, что существуют бесконечно малые части бесконечно малых частей и т. д. без конца; так что, по их мнению, один дюйм содержит не только бесконечное число частей, но бесконечность бесконечности частей ad iufinitum. Другие утверждают, что все порядки бесконечно малых величин ниже первого порядка суть ничто, основательно считая нелепым предположение, будто существует какое-либо положительное количество или часть протяжения, которая, даже будучи бесконечно умноженной, никогда не сравнится с наименьшим данным протяжением. А, с другой стороны, не менее нелепым кажется мнение, будто квадрат, куб или другая степень положительного реального основания есть, как таковая, ничто, как это должны утверждать те, которые признают бесконечно малые величины первого порядка, отрицая высшие их порядки.

Перейти на страницу:

Похожие книги

Homo ludens
Homo ludens

Сборник посвящен Зиновию Паперному (1919–1996), известному литературоведу, автору популярных книг о В. Маяковском, А. Чехове, М. Светлове. Литературной Москве 1950-70-х годов он был известен скорее как автор пародий, сатирических стихов и песен, распространяемых в самиздате. Уникальное чувство юмора делало Паперного желанным гостем дружеских застолий, где его точные и язвительные остроты создавали атмосферу свободомыслия. Это же чувство юмора в конце концов привело к конфликту с властью, он был исключен из партии, и ему грозило увольнение с работы, к счастью, не состоявшееся – эта история подробно рассказана в комментариях его сына. В книгу включены воспоминания о Зиновии Паперном, его собственные мемуары и пародии, а также его послания и посвящения друзьям. Среди героев книги, друзей и знакомых З. Паперного, – И. Андроников, К. Чуковский, С. Маршак, Ю. Любимов, Л. Утесов, А. Райкин и многие другие.

Зиновий Самойлович Паперный , Йохан Хейзинга , Коллектив авторов , пїЅпїЅпїЅпїЅпїЅ пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ

Биографии и Мемуары / Культурология / Философия / Образование и наука / Документальное
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука