131
. Не вправе ли мы отсюда заключить, что132
. Если говорят, что некоторые, несомненно истинные, теоремы были открыты при помощи методов, в которых применяются бесконечно малые величины, что было бы невозможно, если бы существование последних заключало в себе противоречие, то я отвечаю, что при тщательном исследовании окажется, что ни в каком случае не необходимо пользоваться бесконечно малыми частями конечных линий или вообще количеств или представлять их себе меньшими, чем minimum sensibile; скажем более: очевидно, что иначе никогда и не делается, ибо делать это невозможно. И что бы математики ни думали о флюксиях, дифференциальном исчислении и т. п., небольшого размышления достаточно для убеждения в том, что, следуя этим методам, они не представляют себе или не воображают линий или поверхностей меньших, чем воспринимаемые в ощущениях. Они, конечно, если им угодно, могут называть эти малые и почти неощущаемые количества бесконечно малыми или бесконечно малыми частями бесконечно малых; но в конце концов этим все и исчерпывается, так как эти количества в действительности конечны, и решение задач не требует какого-либо иного предположения. Но об этом будет более ясно сказано впоследствии.133
. Из сказанного ясно, что весьма многие и важные заблуждения порождены теми ложными принципами, которые были нами оспариваемы в предыдущих частях этого трактата, и что мнения, противоположные этим ошибочным учениям, представляются самыми плодотворными принципами, из которых вытекают бесчисленные следствия, в высшей степени благоприятные как для истинной философии, так и для религии. В особенности