Читаем Трактат об электричестве и магнетизме. Том 2. полностью

Этими несколько подробными сопоставлениями векторных действительных и векторных кватернионных манипуляций мы, с одной стороны, дополняем информацию п. 2 об обозначениях «Трактата», а с другой - хотим отметить высокое качество принятой в нём терминологии, в определённом смысле более адекватной существу дела, чем наша. В самом деле, скалярная часть произведения векторов


S·AB

->

AB

=

A

B


и векторная часть произведения векторов


V·AB

=>

AxB

->

e

A

B


лингвистически последовательнее отражают существо теоремы приведения, чем наши в общем-то жаргонные обороты «скалярное и векторное произведения».

Конечно, сейчас большинство из нас является приверженцами описания скалярных и векторных полей в действительных переменных, считая его нагляднее кватернионного. Но ведь наглядность - свойство человеческое - прививаемое и воспитываемое. А по строгости оба подхода равноправны.

Далее Максвелл, тоже вслед за Гамильтоном, вводит оператор дифференцирования


=

i

x

+

j

x

+

k

x

.


Собственно говоря, это и есть истинный oператор Гамильтона, а наш модифицированный вариант «набла» приспособлен к действительным переменным и не содержит комплексных факторов i, j, k. С помощью этого оператора образуются три новых математических образа: градиент скаляра (·), ротор или вихрь вектора


V·A

=

rot A

=

xA

->

e

A


и конвергенция (равная дивергенции с обратным знаком)


-S·A

=

-div A

=

·A

=

A

,


а также соответствующие операции второго порядка, важнейшая из которых


·

=-

^2

xx

,


эквивалентна «нашему» лапласиану с противоположным знаком.

Важность этого математического языка несомненна. Без него уравнениям поля не удалось придать бы столь универсального охвата. Так что второе открытие Максвелла в «одушевлённой части» природы было связано с кватернионикой Гамильтона, и оно произошло тоже, как и в случае Фарадея, вопреки общепринятым мнениям профессионалов. Конечно, Максвелл не довёл этот аппарат до современного автоматизма, базирующегося на небольшом числе векторных тождеств, с которыми сейчас быстро осваиваются студенты, но это не умаляет его общей заслуги. Тем более что он пошёл в определённом смысле дальше. Ведь его цель состояла в придании аналитического представления идеям Фарадея, а тот видел поля, как целостные электрические и магнитные «пейзажи», что было адекватно лишь крупномасштабной топологии. И в этом случае Максвеллу опять «повезло»: его снова «поджидал» практически завершённый аппарат интегральных теорем, известных нам как теоремы Гаусса - Остроградского и Стокса, который позволил написать уравнения электромагнитного поля в интегральной форме. Правда, в отличие от дифференциальных, эти уравнения не собраны воедино в «Трактате», а разбросаны по специализированным главам. Но, как следует из Предварительной главы, Максвелл намеревался систематизировать свои топологические идеи на базе критериев перифрактичности, характеризующих трёхмерные многосвязные области.

К сожалению, нам не дано восстановить ход его замыслов. И поэтому, вероятно, некоторые фрагменты рассуждений на эти темы мы принимаем скептически. Например, Максвелл различает векторные поля двух типов - потоковые (пронизывающие поверхности, «ассоциируемые» с ними) и силовые (направленные вдоль линий , «ассоциируемые» с линиями). Такая классификация кажется нам отчасти ситуационной: она, с нашей точки зрения, выполняла функцию наведения, т.е. помогла Максвеллу связать между собой изменения электрических и магнитных полей в пространстве и во времени, но не более того. Формулируя закон индукции Фарадея в интегральной форме


Edl

=-

1

c


t

BdS


(всюду, где не оговорено иное, мы пользуемся в Послесловии гауссовыми единицами и стандартной современной символикой), Максвелл различал общетопологические свойства конфигураций, образованных полями E, H (работает только их вихревая часть, закручиваемая вдоль замкнутых линий) и полями, пронизывающими поверхность, ограничиваемую этим контуром. Отсюда вытекала максвелловская классификация, касающаяся потоковых и силовых векторов. К числу линиеподобных векторов Максвелл относил E, H, вектор-потенциал A и т. п., а к потоковым векторам - B, D, плотность электрического тока j и т. п. Но, уже придя к уравнениям материальных связей в виде D=E, B=H, j=E, он признал равноправие векторных полей обоих типов, в том числе и топологическое равноправие.

Следующий этап состоял в использовании всего перечисленного выше идейного и технического оснащения для установления наиболее общих закономерностей электромагнетизма. Сотни, а может быть, и более работ посвящены изучению фактических и предполагаемых путей, которым следовал или мог следовать Максвелл при продвижении к своим Великим Уравнениям 8.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии