С помощью масс-спектрометра – аппарата размером с домашнюю посудомоечную машину – Шопф с коллегами проанализировали углеродный состав горной породы и содержавшихся в ней волокон. Углеродный состав волокон соответствовал характеристикам живых существ. Более того, в них проявлялись признаки как минимум пяти типов организмов. Какие-то имели признаки организмов, осуществлявших примитивный фотосинтез. Другие походили на микробов, которые способны в качестве источника энергии использовать метан. И если австралийский сланец открывал крохотное окошко в прошлое Земли, через него было видно, что три с половиной миллиарда лет назад жизнь на планете уже была разнообразной.
Мы знаем, что в камнях можно находить химические подтверждения жизни. Даже если окаменелость давно разрушилась, химические характеристики живого существа могут сохраняться. Если живые организмы использовали для метаболизма углерод, в горной породе останутся следы в виде измененного соотношения форм углерода. Анализируя на содержание углерода камни из Восточной Гренландии, группа ученых из Йельского университета обнаружила доказательства присутствия живых существ даже в более древних камнях, чем в Австралии. Этим камням четыре миллиарда лет: они сформировались через пятьсот миллионов лет после возникновения нашей планеты и Солнечной системы.
Все эти данные показывают, что с самых ранних этапов существования Земли до периода около двух миллиардов лет назад наша планета была населена исключительно одноклеточными организмами, жившими по отдельности или в виде колоний. Гены каждого отдельного микроба давали начало следующим поколениям: одна клетка расщеплялась с образованием дочерних клеток, дочерние клетки тоже расщеплялись, и так сменялись поколения. Изобретения касались главным образом новых типов метаболизма и химических адаптаций для более эффективной переработки энергии, топливных молекул и отходов. Одни виды получали энергию из серы или азота, другие – из солнечного света и диоксида углерода. А третьи для переработки энергии использовали кислород. Эти одноклеточные существа подготовили почву для грядущих революций.
Микробный метаболизм изменял мир. На протяжении почти двух миллиардов лет сине-зеленые водоросли были самой многочисленной формой жизни на Земле. Благодаря механизму фотосинтеза они использовали солнечный свет и диоксид углерода для производства необходимой для жизни энергии. Побочным продуктом их жизнедеятельности был кислород. Сине-зеленые водоросли живут колониями —либо в виде таких полос, которые обнаружил Шопф, либо в виде похожих на грибы образований, по размеру сопоставимых с микроволновой печкой. Примерно три с половиной миллиарда лет назад эти колонии активно расселились по всему земному шару. Выделяя кислород на протяжении миллиардов лет, они значительно изменили атмосферу. Четыре миллиарда лет назад в атмосфере было очень мало кислорода, но постепенно его уровень повысился настолько, что мог поддерживать существование разных форм жизни.
Увеличение концентрации кислорода по-разному сказалось на жизни микробов. Для одних он был ядом, тогда как другим предоставлял новые возможности. Не удивительно, что среди процветавших микроорганизмов были те, которые получали энергию с помощью кислорода.
На протяжении миллиардов лет одноклеточные существа были как бы телами без органов: у них внутри не было органелл со специализированными функциями. Признаки изменения впервые были обнаружены в окаменелостях, найденных в 1992 году на железных рудниках в Ишпеминге в штате Мичиган. Выглядят эти окаменелости как закрученные полосы клеток длиной около трех с половиной дюймов. Они содержатся в горных породах возрастом порядка двух миллиардов лет и имеют классическую структуру сложных клеток с органеллами. По их виду не скажешь, но эти закрученные полосы предвещали революцию.
Когда перерабатывающая кислород бактерия слилась с другим микроорганизмом, на планете возник новый тип существ. Как показала Маргулис, в данном случае один плюс один равнялось не двум, а скорее четыремстам. Хозяйская клетка уже имела ядро и механизм для производства разного рода белков. Включив в себя потребляющую кислород бактерию и превратив ее в собственную электростанцию, новая комбинированная клетка приобрела способность создавать еще более сложные белки и смогла изменить свой образ жизни.
А одноклеточная бактерия потеряла возможность жить независимым образом и стала частью нового, более сложного организма, состоящего из нескольких частей. Бывшая сво-бодноживущая бактерия не могла больше воспроизводиться по своему желанию, ее функции были подчинены нуждам хозяйской клетки. А новая комбинированная клетка, получившая энергию для более активного образа жизни и механизм для создания новых типов белков, стала отправной точкой для еще более значительных изменений в истории жизни.
Новые клетки – богатые энергией машины по производству белка – подготовили мир к появлению еще одного типа существ.
Еще одно объединение