Предыдущий метод редактирования генома нуждался в эмбриональных стволовых клетках, масштабном обратном скрещивании[84]
, скрещивании различных линий животных и во множестве поколений мышей; нередко главным результатом какой-нибудь кандидатской диссертации становилось создание и описание всего одной линии генетически модифицированных мышей. Аналогичных результатов команда Йениша, используя CRISPR, достигла всего за месяц, применив простой четкий протокол – микроинъекции компонентов CRISPR непосредственно в одноклеточный эмбрион с последующей имплантацией эмбрионов с отредактированными геномами в матку самки. Более того, эти исследователи показали, что для отдельно взятого CRISPR не обязательно программировать только одну направляющую РНК; их может быть много, и тогда они способны нацеливать Cas9 на разрезание и одновременное редактирование нескольких последовательностей ДНК в эмбрионах мышей. Такой вариант одноступенчатого множественного редактирования генов раньше никогда не применяли на мышах.Возможно, самое прекрасное в работе Йениша – по крайней мере, с точки зрения генетиков, работающих не с мышами, а другими животными, – так это то, что в ходе нее был открыт почти не требующий усилий способ редактирования генома едва ли не любого организма. И если изначальный метод с применением эмбриональных стволовых клеток применяли только на мышах, то теперь создавалось впечатление, что CRISPR можно ввести в любые половые клетки (яйцеклетки и сперматозоиды) или эмбрионы – и генетические изменения на выходе точно скопируются во все клетки и всегда будут передаваться будущим поколениям. В тот момент я не могла вообразить, что расширение области применения CRISPR на человеческие эмбрионы породит одну из самых сложных этических дискуссий вокруг CRISPR – и в эту дискуссию очень скоро затянет и меня.
Летом 2013-го, восхищаясь, с какой скоростью распространяется метод CRISPR, я начала составлять список всех типов клеток и всех видов живых организмов, чьи геномы уже были отредактированы с использованием этой технологии. Сначала это было легко: в январе-феврале список включал в себя данио-рерио и культуры клеток бактерий, мышей и человека, потом к нему добавились дрожжи, живые мыши, плодовые мушки и микроскопические черви. К концу того же года в перечень вошли крысы, лягушки и гусеницы шелкопряда. За следующий год я добавила в список кроликов, свиней, коз, асцидий и обезьян – и после этого, как я честно признавалась слушателям на семинарах, где рассказывала о своем списке, потеряла счет. Наблюдение за тем, как молекулы белков и РНК, в природе служащие для защиты бактерий от вирусов, все шире используются для разрезания и точного редактирования последовательностей ДНК самых разнообразных животных, захватывало дух.
Однако метод находил применение не только на животных. Ботаники, пусть они сначала и двигались медленнее, тоже открывали для себя невероятный потенциал CRISPR в редактировании ДНК сельскохозяйственных и диких растений. Вал публикаций осенью 2013-го сообщал об успешном применении CRISPR для редактирования генома в главных пищевых культурах, таких как рис, сорго и пшеница, а год спустя список “отредактированных” растений расширился за счет сои, помидоров, апельсинов и кукурузы.
Перечень “откриспрованных” растений и животных продолжал расти. К 2016-му исследователи успели отредактировать ДНК едва ли не во всех организмах – от капусты, огурцов, картофеля и грибов до собак, хорьков, жуков и бабочек. Даже вирусам, этим биологическим объектам на границе живого и неживого – они неспособны самостоятельно размножаться, но тем не менее обладают наследственным материалом, – переписали геномы с помощью CRISPR, то есть той самой бактериальной системы, которая изначально сформировалась для их уничтожения.
Стоит отметить, что хотя взрослые