Когда я увидела полученные на компьютере графические решения уравнений движения гироскопа, полученные Сергеем, которые отражали движение гироскопа в режиме датчика угловых скоростей, я была восхищена возможностями современной вычислительной техники. В своей практике я решала приближённые уравнения движения гироскопа без учёта инерционных членов, методом припасовывания, стыкуя уравнения движения гироскопа на разных этапах, для чего я использовала краевые условия на границах участков движения. До появления мощной вычислительной техники во всех учебниках и пособиях по гироскопии записывались точные уравнения движения, а при их решении делалось серьёзное допущение о том, что моментами инерции рамок карданова подвеса можно пренебречь. Теперь же я воочию убедилась, какую важную роль играет их учёт. Мы получили решения для всех интересующих нас условий полёта и конструктивно-технологических параметров гироскопа и системы обратной связи.
В 1996 году наша совместная с Сергеем и Лилей статья “Влияние параметров цепи обратной связи на работоспособность двухрежимного двухосного измерителя угловых скоростей на базе трёхстепенного поплавкового гироскопа” была опубликована в журнале “Гироскопия и навигация”.
...
В этой статье исследовалась работоспособность трёхстепенного поплавкового гироскопа в качестве двухрежимного двухосного измерителя угловых скоростей космического аппарата при различных значениях зоны нелинейности усилителя обратной связи и величины запаздывания в срабатывании датчика моментов, обусловленного индуктивностью его управляющих обмоток и постоянной времени усилителя обратной связи. Величина запаздывания является параметром регуляризации системы, что наглядно продемонстрировали результаты численного моделирования.
Основной вывод этой статьи заключался в том, что прецизионный поплавковый гироскоп может быть использован в качестве двухрежимного двухосного измерителя угловых скоростей космического аппарата, например, в бесплатформенном гироориентаторе. С этой целью в расширенном диапазоне измерений (режиме успокоения колебаний) уменьшают кинетический момент гироскопа и практически во столько же раз увеличивают зону линейности усилителя обратной связи. При этом допускается десятикратное ухудшение точностных характеристик гироскопа. Уменьшение величины кинетического момента в расширенном диапазоне измерений приводит к существенному изменению частоты нутационных колебаний системы и затруднению в подборе корректирующих звеньев. Для достижения устойчивости системы и заданного качества регулирования достаточно подобрать постоянную времени цепи обратной связи.
В узком диапазоне измерений (рабочем режиме) гироскоп работает при номинальном кинетическом моменте, обеспечивая требуемую точность измерений. Обеспечение двух режимов работы – успокоения колебаний после вывода космического аппарата на орбиту и точного измерения его угловых скоростей в рабочем режиме – достигается использованием только двух трёхстепенных гироскопов вместо шести двухстепенных по традиционной схеме.