Читаем Цель жизни. Записки авиаконструктора полностью

Против штопора были мобилизованы значительные силы. Ученые, продувая модели в аэродинамических трубах, стремились найти эффективные способы упреждения. Летчики-герои поднимали машину в воздух и, рискуя жизнью, старались проследить все фазы этого опасного явления, открыть тайну: почему самолет становится неуправляемым. И разгадка была наконец-то найдена.

Оказалось, что решающим условием борьбы со штопором является перенесение центра тяжести самолета ближе к носку крыла, а также увеличение эффективности вертикального оперения. Выполнение этих условий и обеспечило безукоризненные штопорные качества учебно-тренировочной машины УТ-2. Как дальнейшее развитие этого самолета был создан и ЯК-18 – самолет первоначального летного обучения. На нем проходят обучение и получают «путевку в воздух» все летчики в СССР и странах народной демократии.

Учебно-тренировочный Як-18 дал путевку в небо многим летчикам СССР и стран народной демократии. Самолет стал настоящей «воздушной партой»

Летчики называют эту машину «воздушной партой». А некогда грозный штопор входил в обязательную программу обучения.

После того как самолеты стали летать со скоростью 400, 500, 600 и выше километров в час, авиастроители встретились с новым, совершенно неожиданным явлением – флаттером. Конструкция самолета, в особенности крылья и оперение, начинала вибрировать. Вибрация достигала такой силы, что машины нередко рассыпались в воздухе.

В 1934 году думалось, что, решив проблему штопора, дальше можно будет двигаться как по хорошо укатанной дороге. Когда столкнулись с флаттером, опять казалось: сумеют его преодолеть конструкторы – и все пойдет гладко.

И вновь долгие испытания в лабораториях и в воздухе, вновь десятки подвигов летчиков-испытателей, пока причина флаттера не была изучена, а вместе с этим открыты и средства борьбы с ним.

Динамически подобная модель истребителя-перехватчика Як-50 на плавающей подвеске во время испытаний на флаттер, проводившихся в феврале – июне 1950 года в аэродинамической трубе ЦАГИ Т-102

Но появились новые трудности. Они возникли вместе с началом полетов со скоростью звука.

Какой далекой казалась перспектива полета со скоростью более тысячи километров в час!

Самолет, летающий со скоростью звука, считался фантазией. Но жизнь быстро внесла свои поправки. В настоящее время стали уже реальностью самолеты, летающие со скоростями, далеко превышающими скорость звука, и это не кажется нам пределом. Путь к этому лежал через преодоление так называемого звукового барьера.

Достижение скоростей полета, превышающих скорость звука, привело к резкому увеличению аэродинамического сопротивления самолета. При этих скоростях крыло так стремительно рассекает воздушную среду, что впереди него образуется волна из более сжатого воздуха.

Это явление заставило ученых пересмотреть старые законы аэродинамики, изменить внешние формы самолета и вместо крыльев прямоугольной или трапециевидной формы применять стреловидные крылья: они, как оказалось, легче преодолевают сопротивление.

Позади и это, казавшееся «пожизненным», препятствие. И опять на пути к еще более высоким скоростям полета новая преграда – тепловой барьер. Так называется явление, когда поверхность самолета при очень высокой скорости полета нагревается от взаимного трения с частицами воздуха. Еще один сюрприз! Но и он успешно преодолевается.

Авиация давно перестала быть делом одних авиаторов. Наступление на скорость и высоту ведется всеми отраслями науки и производства. Успех создания новой скоростной машины теперь почти в равной степени зависит как от конструкторов, так и от металлургов, создающих новые легкие, жаропрочные сплавы; как от аэродинамиков, так и от разработчиков новых видов пластмассы, которая все шире входит в самолетостроение. Авиация потребовала замены заклепок клеем, и химикам пришлось немало поработать, чтобы появился синтетический клей, пленка которого была бы прочнее склеиваемых материалов.

Ни одна деталь, ни один узел, ни одна система не появятся теперь на самолете, не пройдя огромного количества предварительных испытаний, вплоть до просвечивания рентгеном и испытания на специальных стендовых установках, позволяющих в лаборатории создать естественные условия работы детали в полете на большой высоте и скорости. Слишком своеобразны и трудны стали условия полета.

Вот к примеру: как будет вести себя система управления самолетом? Усилия, затрачиваемые ныне при управлении самолетом, так велики, что при помощи обычных рычагов летчик с этим не справляется. Управление самолетом в полете производится при помощи мощных гидравлических систем, работающих на особой жидкой смеси. Что станет с ней, когда самолет за несколько минут перенесется из 30-градусной жары на земле в 60-градусный холод в поднебесье? Стоит ей загустеть или замерзнуть, управление заклинит – и авария неизбежна. И химики ищут и находят такую смесь, чтобы она не боялась ни жары, ни холода.

Перейти на страницу:

Похожие книги