Читаем Ценность ваших данных полностью

Если обратиться к истокам ИИ, то первые упоминания о нем относятся к 1950-м годам, когда ученые продемонстрировали начальные версии работы искусственных нейронных сетей. К сожалению, после первых успехов исследования в этой области довольно быстро остановились, в первую очередь их-за недостаточности данных и вычислительных ограничений аппаратного обеспечения того времени.

В дальнейшем исследование ИИ шло эволюционным путем. Сначала речь шла о создании решений на основе правил, затем – на принципах нейронных сетей. В основе нейронных сетей также лежали простейшие правила, которые задают направление движения «мысли системы». В отличие от экспертных систем, нейронные сети обучаются не на правилах, а на текстовых входных и выходных данных, имитирующих правила обучения человеческого мозга. Решения на основе правил базировались на опросе экспертов, а их ответы составляли суть решений, называемых также экспертными, логику которых можно описать правилом «если-то». У экспертных систем существует несколько слабых мест, главное из которых – невозможность эффективного использования этого метода при существенном расширении задач и предметных областей.

Когда исследуемые системы стали сложнее, правила стали складываться в конечные автоматы, т. е. последовательности применения правил в зависимости от исхода предыдущего шага. Именно тогда появились нейронные сети. Исследователи-сторонники нейронных сетей не задают правил, основанных на ответах экспертов. Нейронные сети – это шаг в сторону имитации работы человеческого мозга, т. е. это метод использования огромного массива образцов картинок, звуков, математических решений, видеофрагментов для самостоятельного определения закономерностей загруженных данных, используя правила обучения человеческого мозга. В качестве примера можно привести обучение ребенка, когда он видит впервые в жизни какой-то предмет или животное и родители дают определение или другими словами отвечают на вопрос «Что это?». В дальнейшем ребенок, столкнувшись с этим предметом, уже знает из ответов родителей, что это такое, и в процессе взросления получает все больше описательной информации об этом предмете и самостоятельно оценивает увиденное/услышанное, делает определенные выводы и принимает самостоятельные решения.

По мере усложнения задач развитие технологий нейронных сетей требует не только существенного развития вычислительных мощностей, но и огромного объема данных, а также алгоритмов обучения все увеличивающихся слоев искусственных нейронов. Во многом благодаря исследованиям Джеффри Хинтона[549] в 2000-х годах появился термин «глубокое обучение», основанный на открытом им способе эффективного обучения добавленных слоев.

Перспективы технологии нейронных сетей привели к тому, что решения ИИ, основывающиеся ранее на экспертных знаниях, теперь целиком и полностью базируются на данных. По мнению одного из известнейших мировых экспертов в области искусственного интеллекта Кай-Фу Ли, «для создания эффективных алгоритмов искусственного интеллекта нужны три составляющие: большие объемы данных, вычислительные мощности и труд способных – но не обязательно выдающихся – разработчиков алгоритмов искусственного интеллекта»[550].

При этом основу развития технологий искусственного интеллекта сейчас составляют данные, их объемы и качество. Чем выше значения этих параметров, тем более эффективные алгоритмы они позволяют создать, независимо от направлений деятельности этих решений. Преимущество в технологиях ИИ получат те страны и компании, у которых формируется наибольший объем данных, которые из количества переходят в качество. ИТ-гиганты многие годы накапливают данные пользователей и их активности – как в онлайн-платформах (различные транзакции, приобретаемые услуги и товары, их характеристики, история поисков, загруженные и просмотренные фотографии, видео, комментарии и лайки и прочие активности), так и данные из реальной жизни (банковские транзакции, использование различных финансовых и страховых сервисов, посещение ресторанов, фитнес-клубов, и данные о разнообразных пристрастиях, данные о путешествиях и многих других данных, собираемых бизнесом не только о пользователях, но и о членах их семей, друзьях и коллегах). Все это позволяет собрать полноценную картину повседневной жизни граждан и бизнеса.

По мнению Кай-Фу Ли, «полный переход к повсеместному использованию искусственного интеллекта займет некоторое время и будет состоять из четырех волн – т. е. этапов внедрения искусственного интеллекта. Первым мир покорит ИИ интернета, затем ИИ для бизнеса, потом наступит черед ИИ восприятия и автономного ИИ. На каждом из этих этапов ИИ будет захватывать новые области нашей повседневной жизни»[551].

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес