Читаем Центробежные насосы нефтепереработки полностью

Для устранения этой проблемы может быть применен, заимствовано техническое решение по опорному подшипнику качения с погружных электродвигателей.

<p>Расчет на резонанс валов насосов</p></span><span>

Конструкции нефтяных насосов подробно приведены и описаны в классической литературе [7], [8], [9], [10].

Расчет методом конечных элементов является теоретически самым обоснованным методом расчета валов и выполняется в специальном программном пакете. Используемый программный пакет может выступать в роли стандарта по-умолчанию на расчет валов на резонанс.

Ниже приведем теорию расчета на резонанс по теории колебаний и по теории, на которой основан расчет в программном пакете по методу конечных элементов.

Расчет насоса является междисциплинарной задачей, в которой первоначально строится модель, рассчитывается гидродинамический процесс, происходящий при взаимодействии лопастей с потоком, прочностной расчет корпуса и оболочек, расчет вала на резонанс, расчет подшипниковых узлов, расчет других деталей.

Для выполнения связанного междисциплинарного расчета рекомендуется пакет ANSYS. Для сквозного проектирования по результат расчета рекомендуется российский пакет КОМПАС 3D.

<p>Расчет валов на резонанс по теории колебаний</p></span><span>

Колебания при вращении вала происходят в результате отсутствия равновесия между внутренними силами упругости металла и внешними динамическими нагрузками. При гармоническом колебании отклонение оси вала от прямой происходит по синусоиде, т.е.:

Под степенью свободы понимается определение положения вала относительно системы координат с помощью одной координаты. Этой одной координате соответствует одна мешалка на валу.

Если колебания вала возникают из-за колебаний упругих внутренних сил, колебания являются свободными или собственными. Если под действием внешней силы по закону с заданной периодичностью, то колебания являются вынужденными.

Положительным расчетом вала на колебания является результат, по которому частота собственных колебаний не совпадает и не имеет близкого значения с критической частотой, т.е. с частотой вынуждающей силы.

При расчета по теории колебаний рассчитываются собственные и критические частоты. В случае их совпадения изменяется жесткость вала или устанавливается другая частота вынужденных колебаний.

Изменение жесткости вала связано с изменением статической деформации, которая связана со свободной частотой по формуле:

На резонансной частоте амплитуда вынужденных колебаний неограниченно возрастает при отсутствии внешних сопротивлений:

При наличии ограничителей колебаний, при резонансе амплитуды не превышают какого-либо максимального значения. Для валов мешалок в условиях отсутствия элементов, ограничивающих колебания, важно обеспечить расчетом отсутствие совпадения частот свободных колебаний и резонанса. При разгоне вала до рабочих оборотов, происходит быстрый переход через резонансную частоту, не оказывающий влияния на вал.

Для значений частот, близких к резонансной возникают биения вала. Для случая вала мешалки при отсутствии сопротивлений биению, колебания имеют вид:

Затухающие биения при отходе от частот, близких к резонансным имеет вид:

Для получения формулы вынужденных колебаний с учетом сопротивлений к внешним силам добавляют периодическую возмущающую силу (к внешним силам прибавляется сила препятствующая движению).

Упругие колебания системы с одной степенью свободы в общем случае (вторые два члена формулы относятся к вынужденным колебаниям):

Уравнения для всех трех приведенных случаев колебаний можно получить из него как частные случаи:

– собственные колебания без учета сопротивлений (f = 0, q = 0)

– собственные затухающие колебания (вынуждающая сила W = 0, )

– вынужденные колебания без учета сопротивлений (, , в формуле получается, что первый член является вынужденными колебаниями, остальные два члена свободными колебаниями)

Формула вынужденных колебаний получается из вторых двух членов уравнения упругих колебания после отбрасывания свободных колебаний и замены в формуле

Т.е. вынужденные колебания являются гармоническими (так же как и собственные)

Амплитуда вынужденных колебания находится возведением в квадрат указанных двух членов формулы и последующим сложением:

Как видно из формулы амплитуда вынужденных колебаний пропорциональна возмущающей силе, зависит от сравнительной частоты свободных р и вынужденных m колебаний, определяющих затухание свободных колебаний f.

При m<p амплитуда С приближается к статической деформации вала.

Перейти на страницу:

Похожие книги