Читаем Центробежные насосы нефтепереработки полностью

– частоту

– круговая частота

Если собственную массу балки не учитывать:

Т.е. к массе мешалки необходимо прибавить от веса вала.

__

Рассмотрим по методу Релея колебания двухопорной однопролетной балки (вала), нагруженной сосредоточенной силой в произвольном положении [14,с.70].

Обобщенное перемещение:

Кинетическая энергия груза:

Кинетическая энергия элемента балки dc:

Уравнение изогнутой оси балки (вала):

В точке приложения груза:

При формула имеет вид, как для предыдущего примера:

Потенциальная энергия системы:

Уравнение Лагранжа:

Для статического удлинения k необходим груз:

Находим:

– период

– частоту

– круговая частота

__

Рассмотрим по методу Релея колебания двухопорного однопролетного вала, нагруженной двумя произвольно приложенными сосредоточенными силами [14,с.76].

Ограничения метода Релея приводят систему к системе с 1 степенью свободы. При точном рассмотрении системы, она имеет множество степеней свободы.

Перемещение каждого груза:

Наибольшие перемещения грузов являются амплитудой для, для

Скорости грузов:

Максимальная скорость при

Максимальная скорость соответсвует переходу точки через статическое равновесие, т.к. фаза pt равна 0° или 180° при положении точки с на оси балки.

Скорость колебаний переменная, так как колебание происходит по закону синусоиды, например,. При изменении положения и скорости точки, меняется энергия колебания. При колебании происходит непрерывный взаимный переход кинетической энергии в потенциальную.

Сумма энергий постоянна и является полной энергией системы при рассмотрении идеального случая без потерь:

Для какого-либо конкретного положения системы:

При нахождении точки на оси абсцисс (оси вала), потенциальная энергия равна нулю, кинетическая максимальная:

Т.е. вся полная энергия системы является максимальной кинетической энергией.

Для фазы pt равной 90° или 270° кинетическая энергия равна нулю, а потенциальная энергия максимальная:

Т.е. вся полная энергия системы является потенциальной энергией.

Можно записать:

Для случая рассматриваемого груза:

Из этой формулы находится круговая частота:

Период колебаний:

___

Для трех грузов на валу, круговая частота запишется по формуле:

__

Для n грузов круговая частота запишется по формуле:

Как можно видеть, определение круговой частоты сводится к нахождению статических прогибов. Прогибы могут быть также найдены графоаналитически.

Для одного груза круговая частота запишется по формуле:

__

Рассмотрим по методу Релея колебания двухопорного однопролетного вала, нагруженной распределенной нагрузкой [14,с.81].

Мешалки являются сосредоточенной нагрузкой на валу и пример приводится для сведения.

Балка с распределенной нагрузкой условно разбивается на ряд участков с заменой распределенной нагрузки, приходящейся на каждый участок, сосредоточенной силой, приложенной по центру тяжести участка.

Колебания системы с распределенной нагрузкой находятся по приведенной выше формуле:

Точность решения зависит от числа n участков.

Прогибы находят по уравнению упругой линии с равномерно распределенной нагрузкой:

Для 8 участков (8 прогибов):

С учетом этого, уравнение упругой линии:

С учетом того, что

__

Рассмотрим по методу Релея колебания балки на нескольких опорах [14,с.87].

Схема трехопорного неразрезного вала подходит для однопролетного вала, имеющего дополнительный короткий пролет в верхней стойке привода электродвигателя.

В целом многопорный вал больше соответствует конструкциям полупогружных насосов, погружных электродвигателей, но пример трехопорного вала нужно использовать в проектировании химических и нефтяных аппаратов с перемешивающими устройствами.

Форма прогиба такая же как у статического прогиба под действием сил, применяя принцип Даламбера (приводя динамическое нагружение к статическому приложению сил).

Силы инерции вызывают дополнительный прогиб х1 и х2. Их уравновешивают дополнительные силы упругости, возникшие из-за этого прогиба.

k1 – прогиб в сечении I от силы равной 1 и приложенной в сечении I,

k2 – прогиб в сечении I от силы равной 1 и приложенной в сечении II,

k3– прогиб в сечении II от силы равной 1 и приложенной в сечении I,

k4 – прогиб в сечении II от силы равной 1 и приложенной в сечении II,

Сила инерции в сечении I:

Сила инерции в сечении II:

Сила равная 1 приложенная в сечении I вызывает прогиб k1, а сила инерции в этом же сечении вызывает прогиб:

Прогиб в этом же сечении от силы инерции, приложенной в сечении II:

Полный прогиб в сечении I:

Полный прогиб в сечении II:

Полученные уравнения для х1 и х2 являются дифференциальными уравнениями движения для рассматриваемого случая трехопорного вала.

Перейти на страницу:

Похожие книги