Результаты, приведенные выше, могут быть расширены на случай стегосистем с бесконечными алфавитами контейнеров и стего X
и ключей K. Заметим, что стегосистемы с непрерывными сообщениями и ключами существенно отличаются от известных криптографических систем. Для бесконечномерных сигналов существуют криптосистемы, например, использующие частотные или временные преобразования речи или изображений. Системы шифрования, в которых криптографические преобразования осуществляются над непрерывными в пространстве или времени сигналами, называются маскираторами и, как правило, не обеспечивают высокой криптографической стойкости [27]. Забегая вперед, скажем, что в отличие от криптосистем, для стегосистем с бесконечными алфавитами известны доказуемые оценки их устойчивости к атакам нарушителя. К тому же маскираторы используют ключ конечной длины, элементы которого принадлежат дискретному алфавиту. И, вообще, представить себе произвольную криптосистему с ключом, элементы которого принадлежат бесконечному алфавиту, довольно затруднительно.Расширим определение взаимной информации для переменных и K
стегосистемы, принадлежащих бесконечным алфавитам в виде [25]:
где дискретные переменные и , принадлежащие конечным алфавитам, аппроксимируют с некоторой допустимой погрешностью соответствующие непрерывные переменные. Если все функции плотности вероятности являются абсолютно непрерывными, то результаты из пункта 3.3 справедливы при замене соответствующих сумм интегралами.
Особый интерес имеет случай контейнеров , распределенных по нормальному закону и оцениваемых среднеквадратической погрешностью вида . Назовем этот случай гауссовским контейнером. Он позволяет точно оценит величину скрытой ПС. Пусть множество X
совпадает с множеством действительных значений, математическое ожидание значений отсчетов контейнера равно нулю и их дисперсия равна . В дальнейшем будем использовать условное обозначение нормального распределения с математическим ожиданием и дисперсией в виде .Рассмотрим два случая. В первом случае секретным ключом К
стегосистемы является контейнер . Во втором случае контейнер получателю не известен (слепая система скрытия информации).Случай негауссовского распределения контейнера намного сложнее, но полезные результаты также могут быть получены. В частности, нижняя граница скрытой ПС может быть получена оценкой оптимальной атаки при конкретной, в общем случае подоптимальной, информационно-скрывающей стратегии . Нижние и верхние границы скрытой ПС могут быть вычислены оценкой оптимальной информационно-скрывающей стратегии при конкретной, в общем случае подоптимальной, атаке :
. (3.18)
Эти границы полезны для негауссовских контейнеров, полагая что распределения и выбраны соответствующим образом (см. пункт 3.8). Разумеется, если нижняя и верхняя границы в выражении (3.18) равны, пара распределений дает седловую точку платежа в формуле (3.8).
3.6.1. Использование контейнера как ключа стегосистемы
Рассмотрим случай, когда в качестве секретного ключа стегосистемы используется описание контейнера. Соответственно, ключ-контейнер должен быть известен получателю скрываемого сообщения. Для этого случая теорема 3.6 определяет величину скрытой ПС стегоканала с бесконечным алфавитом контейнеров.
Назовем гауссовским атакующим воздействием воздействие нарушителя, при котором искаженное стего имеет нормальное распределение с математическим ожиданием, величина которого пропорциональна среднему значению стего, и дисперсией, величина которой пропорциональна искажению .
Теорема 3.6
: Пусть в стегосистеме с бесконечным алфавитом используется среднеквадратическая мера погрешности вида . При использовании контейнера в качестве секретного ключа K:1) если контейнер имеет нормальное распределение с нулевым средним и дисперсией , то при использовании оптимального скрывающего преобразования величина скрытой ПС равна
(3.19)
где . Оптимальное скрывающее преобразование задается в виде , где переменная Z
имеет нормальное распределение с нулевым средним и дисперсией и независима от контейнера . Оптимальная атака нарушителя есть гауссовское атакующее воздействие с функцией распределения вида
(3.20)
2) если контейнер является негауссовским с нулевым средним и дисперсией , то выражение (3.19) определяет верхнюю оценку скрытой ПС.