Я работаю в регионе, для которого характерно совместное проживание межвидовых гибридов зелёных лягушек и одного из родительских видов. Среди гибридов есть те, которые имеют 2 и 3 хромосомных набора. Естественно ожидать, что развитие гибридов (которые обладают хромосомными наборами, относящимися к двум разным видам) должно быть менее устойчивым, чем развитие представителей родительских видов. Особой неустойчивости развития следует ожидать от гибридов с тремя хромосомными наборами. Эти наборы эволюционировали в особях родительского вида, имевших по два набора, а затем они встретились по трое в каждой клетке — и, как ни странно, могут руководить развитием особи.
Зелёные лягушки имеют очень характерный рисунок на верхней поверхности тела. Неустойчивость развития гибридов можно оценить по ФА их рисунка?
Ничего подобного. Гибриды (с 2 и 3 хромосомными наборами) и представители родительского вида, как кажется, практически не отличаются друг от друга по уровню ФА рисунка, оценённой с помощью нескольких разных мер. Более того, разные меры асимметрии рисунка очень слабо коррелируют друг с другом. Если бы на них влияла неустойчивость развития, у менее устойчивых особей возрастала бы асимметрия, оцениваемая по большинству из этих мер; увы, этого не наблюдается.
Как это сочетается с такими хорошими теоретическими соображениями, которые я изложил в этой колонке? А никак. Теория теорией, но эмпирические данные — упрямая вещь.
Что в сухом остатке? Измерение флуктуирующей асимметрии — интригующий метод, разработанный, чтобы докопаться до самых интимных механизмов развития. Увы, он работает не всегда. Часто действительность оказывается «непослушной» и выдаёт результат, прямо противоположный ожидаемому. Вероятно, в таких случаях в игру вмешивается какой-то неизвестный нам фактор. Как его изучать? Хотел бы я знать…
Заметки о протозвёздах и планетах (II)
Увы, увы, конференция Protostars & Planets VI окончательно ушла в прошлое. Произнесены прощальные благодарственные речи, сделано памятное фото, и разошлись учёные по городам и весям осмысливать услышанное и увиденное. А я постараюсь во второй части своих заметок описать то, о чём говорилось в «планетной» части конференции.
Итак, каким-то образом вещество будущей системы «звезда + планеты» отделилось от родительского молекулярного облака и начало самостоятельное существование (насколько вообще можно говорить о самостоятельности в Галактике). Что должно происходить дальше? Дальше в центре системы появляется собственно звезда, которую окружает газопылевой диск. Со временем в диске формируется планетная система — картина, общие контуры которой были нарисованы ещё Кантом — Лапласом, а детализацию предложил В. С. Сафронов. Численное исследование процесса формирования планет из пылинок (а Земля — это до неприличия разросшаяся космическая пылинка) началось ещё в прошлом веке, но до сих пор не привело к устраивающему всех результату. Математически эта задача ещё более сложна, чем проблема образования звезды из молекулярного облака. Масса космической пылинки — 10-14 г, а масса Земли — 6 1027 г. То есть, потребна модель, способная адекватно описывать изменение массы частицы более чем на 40 порядков.
Первые модели такого рода выявили существенные проблемы в стандартной картине, связанные с тем, что обычное слипание пылинок не позволяет преодолеть так называемый «метровый барьер». Частицы охотно вырастают до сантиметровых размеров, но после этого их столкновения приводят не к слипанию, а скорее к отскоку друг от друга или даже разрушению, но никак не к росту. В последние годы много усилий прилагается к тому, чтобы перепрыгнуть через метровый барьер. На помощь приходит добавление физических подробностей. В «базовой комплектации» модель космической пыли как нельзя лучше соответствует образу «сферического коня в вакууме». Если начать несколько уходить от этого образа, метровый барьер пусть и не исчезает совсем, но по крайней мере становится менее высоким. Ситуацию со слипанием, например, улучшает учёт возможной пористости пылинок: они ведь вовсе не обязаны быть гладкими силикатными шариками. Далее, барьер возникает в моделях при условии, что для скорости столкновения пылинок принято некоторое «типичное» значение. В реальном же мире имеет место не одно значение, а распределение по скоростям, и в росте пылинок большую роль могут играть частицы, скорости которых приходятся на «хвосты» этого распределения.