Читаем Цивилизация с нуля. Что нужно знать и уметь, чтобы выжить после всемирной катастрофы полностью

В 1930-х гг. в раскопках около Багдада обнаружилось несколько любопытных артефактов. Это были глиняные сосуды, каждый около 12 см высотой, датированные парфянской эпохой (200 г. до н. э. — 200 г. н. э.). Примечательным в этих сосудах было их содержимое. В каждом находился железный стержень, помещенный в трубку из свернутого медного листа, и обнаружились следы присутствия кислотосодержащей жидкости типа уксуса. Металлические детали не соприкасаются, а горлышко сосуда было запечатано природным изолятором битумом. По одной из версий, этот древний реликт представляет собой гальванический элемент, использовавшийся, возможно, для напыления золота на ювелирные украшения, а может быть, у покалывающего электрического тока предполагали лечебные свойства. Реплики, сделанные с «багдадских батарей», спокойно выдавали напряжение около 1,5 В, но свидетельства применения гальванических покрытий, прямо сказать, недостаточны, и назначение загадочных сосудов по-прежнему остается под вопросом. Если они все же созданы для получения электричества, что, безусловно, возможно, тогда их создатели опередили Алессандро Вольту более чем на тысячелетие.

Если химическую реакцию, снимающую электроны с отрицательного контакта и переносящую на положительный, можно обратить, получаем вдвойне полезный снаряд — возобновляемую батарею. Простейшая для изготовления заряжаемая с нуля батарея — это свинцово-кислотный аккумулятор, широко применяемый на автомобилях. Электродами служат свинцовые пластины, погруженные в сернокислый электролит. Оба электрода реагируют с кислотой, превращаясь в сульфат свинца, но во время зарядки положительный электрод переходит в оксид свинца (свинцовая ржа), а отрицательный — в металлический свинец, а во время разрядки батареи происходит строго обратное. Каждый такой элемент производит чуть больше 2 В, а шесть штук, соединенные последовательно, дают 12 В на выходе автомобильного аккумулятора[34].

С батареями, однако, есть одна трудность: хотя они служат фантастически удобным переносным источником энергии, от которого работают наши ноутбуки, смартфоны и другие новейшие устройства, здесь мы просто подключаемся к энергии, уже содержащейся в разнородных металлах (точно так же сжигание дров всего лишь высвобождает энергию углерода, реагирующего с кислородом). Сначала придется истратить немало энергии на получение чистых реактивных металлов или на подзарядку возобновляемой батареи от какого-то источника. Батареи — это хранилище, а не источник.

Свойства электричества, от которых мы так зависим в современном мире, представляют собой совокупность взаимосвязанных явлений, на которые человек наталкивался начиная с 1820-х гг. Положите компас рядом с проводом, по которому течет ток из аккумуляторной батареи, и вы увидите, что стрелка отклонится. Провод создает магнитное поле, которое локально превалирует над магнитным полем Земли, и потому стрелка компаса меняет положение. Эффект можно усилить, туго обвив проводом железный стержень: в этом случае несильные поля от провода, складываясь, превращают железный сердечник в мощный электромагнит, который можно включать и выключать щелчком рубильника и применять для постоянного намагничивания других кусков железа.

Но если электрический ток создает магнитное поле, не верно ли и обратное: может ли магнит вызвать ток в проводнике? И в самом деле — может. Если возле мотка проволоки перемещать магнит или даже включать и выключать электромагнит, в проволоке возникнет ток. Чем быстрее магнитное поле движется мимо провода, тем мощнее ток. То есть электричество и магнетизм — это симметричные неразрывно переплетенные силы: две стороны одной медали электромагнетизма.

Простое наблюдение, состоящее в том, что магнитное поле индуцирует электрический ток, открывает нам необъятное разнообразие современных технологий: с помощью магнита самое движение можно преобразовать в электроэнергию. И не надо зависеть от батарей, требующих дорогого металла и быстро истощающихся: вращая магнит в бухте проволоки или бухту вокруг магнита, можно получать сколько нужно электроэнергии. Принцип работает и в обратную сторону: электромагнитное поле может приводить тела в движение. Положите сильный магнит рядом с проводом, и вы заметите, что провод вздрогнет оттого, что в нем возник ток. Это эффект отталкивания. Немного поэкспериментировав, можно определить, как расположить электрические провода и магниты (или даже электромагниты), чтобы привести в движение быстро крутящийся вал. Сегодня электромоторы приводят в движение промышленные машины, пилят лес и мелют зерно, и в вашем доме их добрый десяток: электромотор жужжит в пылесосе, вертит вытяжной вентилятор в ванной, вращает диск в DVD-проигрывателе. Миниатюризация труда облегчает наш быт, электромоторы нынче всюду, и они почти невидимы.

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература