Читаем Цивилизация с нуля. Что нужно знать и уметь, чтобы выжить после всемирной катастрофы полностью

Но, пожалуй, самого остроумного подхода потребовало создание такого необходимого устройства, как выпрямитель, снимающий звуковые частоты с несущего сигнала. Кристаллов вроде железного колчедана или галенита на фронте было не достать, но оказалось, что заржавленные бритвенные лезвия и окисленные медные монетки тоже годятся. Лезвие втыкали в кусок дерева рядом с разогнутой английской булавкой. К острию булавки прочно крепили (например, туго приматывали проволокой) заточенный грифель, и за счет своей упругости булавка отлично служила «кошачьим усом», позволяя точно настроить примыкание грифеля к поверхности окисленного металла, чтобы чисто демодулировать сигнал.

Кристаллические радиоприемники (как и «ржавчинно-грифельные» детекторы) прекрасны своей простотой и не нуждаются в источнике электропитания, поскольку получают необходимую для работы энергию прямо из уловленных радиоволн. Но кристаллический детектор ненадежен, и звук такой приемник производит негромкий. Решает эту проблему и дает начало новой революционной технологии, имеющей самый широкий спектр применений, вакуумная трубка — близкий родственник другого убиквиста современной цивилизации, электрической лампочки.

Как и лампочка Эдисона, вакуумная трубка состоит из металлической нити накаливания, помещенной в стеклянную капсулу, но есть важное отличие в том, что вокруг нити выставлен металлический экран, а внутри капсулы почти абсолютный вакуум. С нити, раскаленной добела, электроны отрываются и образуют вокруг нее облако-заряд. Это явление называется «термоэлектронная эмиссия» и используется в рентгеновских аппаратах, люминесцентных лампах, старых телевизорах и компьютерных мониторах. Если экран заряжен более положительно, чем нить, высвободившиеся электроны притягиваются к нему, и в нем возникает ток. В обратную сторону ток пойти не может, потому что металлический экран не нагревается и не испускает электронов, следовательно, такого рода диод (прибор с двумя металлическими контактами или электродами) действует подобно клапану, пропуская ток лишь в одну сторону. Основанный на совсем иных физических процессах, этот термоэлектронный клапан выполняет те же функции, что и кристаллические детекторы, и его можно сразу использовать как демодулятор в радиоприемниках. А одно простое дополнение к конструкции дает нам важнейшую инновацию и целый спектр небывалых возможностей.

Если взять обычный вакуумный диод и поместить между нитью накаливания и экраном проволочную спираль или сетку, можно наблюдать кое-что фантастическое. Такое трехконтактное устройство называется триодом, и, варьируя напряжение, подаваемое на сетку, можно влиять на ток, возникающий между нитью и экраном. Подавая на сетку небольшое отрицательное напряжение, мы отклоняем траектории электронов, испущенных нитью и летящих к экрану. Усилив напряжение, мы еще больше разредим их поток — это как пережимать коктейльную соломинку, дозируя прохождение напитка. Но главное — триод дает возможность, варьируя напряжение на одном из контактов, управлять напряжением на другом. Гениальное применение этого свойства заключается в том, что микроскопическими колебаниями малого напряжения на контрольной сетке можно вызвать значительные вариации напряжения на выходе. Вы усилили входящий сигнал.

Триод делает то, чего не могут кристаллы: усиливает полученный сигнал так, что через динамики его слышно во всей комнате. Также триод позволяет получать электрические колебания строго заданной частоты, что идеально для узкополосного несущего сигнала, и без труда накладывать на этот сигнал звуковую модуляцию. Все это важнейшие функции для радиовещания, но не менее полезны вакуумные радиолампы и в роли переключателей, регулирующих направление тока много быстрее механических рубильников. Монтируя множество таких ламп в одну сеть, где они управляют друг другом, можно выполнять математические вычисления и даже собирать полностью программируемые электронно-вычислительные машины[41].

<p>Глава 11</p><p>Сложная химия</p>
Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература