Читаем Цветное телевидение?.. Это почти просто! полностью

Представь себе, что радиус, направленный вначале горизонтально вправо (назовем это «нулевым положением»), начнет вращаться в «тригонометрическом направлении», т. е. в направлении, противоположном ходу часовой стрелки. Он последовательно пройдет через различные отмеченные нами на окружности точки, образуя с горизонтальной осью углы 22,5°, 45°, 67,5°, 90°, 112,5° и т. д. до 360°.

А теперь нанесем на горизонтальной оси 16 равно удаленных одна от другой точек. На вертикалях, проходящих через эти точки, отметим проекцию вращающегося радиуса. Как это сделать? Просто-напросто от каждой соответствующей точки окружности мы проводим прямые горизонтальные линии, которые пересекают вертикаль, проходящую через соответствующую точку оси. Точка О находится на самой оси. Точка 1 и последующие за нею до точки 7 включительно находятся над осью, а точка 8 опять находится на оси. Точки с большими номерами находятся под осью. Выше всех расположена точка 4, а ниже всех — точка 12.

Ты видишь, Незнайкин, что синусоида образуется вращением нашего радиуса точно так же, как синусоидальный ток наводится вращением витка в магнитном поле.


Вот что такое вектор…


Наш радиус характеризуется своими длиной и направлением. Его длина определяет амплитуду изображаемых синусоидой колебаний, а его направление определяет фазу синусоиды. Действительно, наша синусоида могла начаться не из точки О, а из любой другой точки окружности, что привело бы к смещению синусоиды вперед или назад.

Радиус, исходящий из центра круга к одной точке окружности и имеющий определенную длину, мы называем «вектором». Так можно назвать вообще любой ориентированный отрезок прямой.

Вектор полностью определен, когда известна его длина (которую называют модулем), точка, из которой он исходит, и направление, определяемое углом, который он образует с горизонтальной осью. Этот угол называется аргументом.



Складывать синусоиды?..


Представь теперь, Незнайкин, что мы имеем два вектора, исходящие из одной точки и вращающиеся с одной и той же скоростью, но смещенные один относительно другого (их называют «связанными»). Они порождают две синусоиды, которые тоже смещены относительно друг друга или, как говорят, «сдвинуты по фазе».

Приступим к сложению этих синусоид, чтобы определить, какой результат получится в случае наложения в одной схеме двух колебаний, изображенных этими синусоидами.

Для начала возьмем наиболее простой случай, когда два вектора имеют одинаковую длину, но направлены в разные стороны, т. е. сдвинуты на 180° (рис. 40).



Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже