Хочешь ли ты, чтобы я открыл тебе секрет значительно более простого способа, который освободит тебя от трудоемких вычислений и позволит найти характеристики результирующего колебания, т. е. определить его фазу и амплитуду?
Ну ладно, этот секрет —
Прежде всего пойми, что вместо синусоиды можно начертить просто образующий ее вектор. Его длина дает нам информацию об амплитуде колебаний, а его направление — об их фазе.
Впрочем, ты можешь представить себе, что вектор вращается в темной комнате и что на каждом обороте короткая вспышка света позволяет нам его увидеть. Вспышки производятся с той же частотой, с которой вращается вектор, тогда при любой скорости движения он покажется нам неподвижным. Это принцип стробоскопа.
Заменив синусоиды векторами, ты, несомненно, заметишь тот факт, что векторы остаются неподвижными один относительно другого лишь до тех пор, пока частота колебаний остается идентичной.
Ты хочешь сложить две синусоиды? Просуммируй их векторы. Как это сделать? Очень просто, помести второй вектор так, чтобы его начало совпало с концом первого. Сумма этих векторов представлена третьим вектором, у которого исходная точка общая с первым, а конец совпадает с концом второго (рис. 44).
Рис. 44.
Проверь сказанное мною на рассмотренном примере сложения двух синусоид. Два противоположно направленных вектора идентичной длины взаимно уничтожаются. Если длины этих векторов различны, то их сумма представляет собой разность их длин, а ее ориентация соответствует направлению более длинного вектора. Когда же сдвиг фазы отличается от 180°, векторное сложение позволяет определить амплитуду и фазу результирующего колебания.
Я добавлю, что вместо того, чтобы помещать начало одного вектора у конца другого, можно строить параллелограммы (рис. 45). (Ты, вероятно, изучал это в курсе механики).
Рис. 45.