Первый когерентный радар декаметрового диапазона SuperDARN (SD) был развернут на территории обсерватории «Арти» [140] Института геофизики Уральского отделения РАН и расположен на окраине поселка Арти. Радар ЕКВ, чувствительный к плазменным неоднородностям, был запущен на круглосуточный режим работы 17.12.2012 г. Основа работы радара – наблюдение характеристик обратно рассеянного сигнала одновременно в режимах возвратно-наклонного зондирования (ВНЗ) и обратного рассеяния на мелкомасштабных неоднородностях ионосферы [141]. Изделие позволяет вести мониторинг ионосферы с использованием наземных средств измерений в широком диапазоне долгот и широт. В вертикальной плоскости радар имеет широкую диаграмму направленности, рабочим считается диапазон углов излучения от 5º до 45º [142]. Горизонтальный сектор сканирования радара – 50°, расположен между азимутами 346° и 36°. Внутри сектора сканирование осуществляется перебором шестнадцати фиксированных направлений в течение 60 секунд [34], ширина обзора лепестка 3–6°. В модели, принятой учеными, разница частот излучаемого и принимаемого сигналов характеризует скорость перемещения неоднородностей в ионосфере на высоте 150–450 км. Исследования показывают удовлетворительное соответствие подобной модели, полученным экспериментальным результатам на когерентных радарах.
Наблюдения радаром ЕКВ ИСЗФ СО РАН ведутся с разрешением 60 км в диапазоне дальностей 400–3500 км. Над территорией России 15.02.2013 г. регистрируют появление неоднородностей. На удалении 1500–1800 км к северо-востоку от радара с 02:00 UTC наблюдались плотные неоднородности длиной
К 03:00 UTC длина неоднородностей на северо-востоке достигает 600 км. Они наблюдаются на удалении 1750–2350 км [140, рис. 3a]. С 03:30–03:50 UTC происходит разуплотнение неоднородности [140, рис. 3б]. Его связали с долготной зависимостью электронной концентрации в районе солнечного терминатора. В статье утверждают, что на диаграмме дальность–время наблюдаются возмущения электронной концентрации, имеющие вид наклонных треков. Можно ли говорить об ионосферных возмущениях, когда независимо от азимута и дальности наблюдений неоднородности не исчезают, а их длина в течение 2,5 часов растет? Для наиболее мощной наблюдаемой моды дальность до возмущения слабо зависела от азимута и сохранялась во времени. Это особенность позволяет авторам работы предположить радиальное распространения возмущения, т. к. фронт перемещения неоднородностей близок к сферической форме [140, рис 5]. В работе фигурирует дальность, но, к сожалению, из исследования выпадает высота расположения неоднородностей.
После взрыва метеорита в рассеянном сигнале присутствовало несколько перемещающуюся неоднородность средних масштабов (midscale traveling ionospheric disturbances, MSTID) с радиальными скоростями 250, 400 и 800 м/c. Характеристики полученных сигналов позволили предположить, что фронт волны близкий к дуге окружности, ее центр расположен вблизи радара EKB. Ученые обозначают [140] проблемы, но не рассматривают вопрос о причине притяжения неоднородностей, удаленных от него на расстояние > 1000 км, к центру Важно было узнать: какой физический процесс создал возмущения электронной концентрации за 1500–2000 км через 10 минут после взрыва, изменил структуру плотной неоднородности и превратил ее в MSTID? Авторы [141] не исключают связь эффекта с появлением перемещающихся ионосферных возмущений, которые вызваны как естественными ионосферными процессами, так и землетрясениями. Работа несколько порастеряла качество, поскольку в ней не рассматривают высоту расположения неоднородностей и центра притяжения.