Читаем Твиты о вселенной полностью

Наблюдение за звездами и планетами через турбулентную атмосферу подобно разглядыванию лампочек на потолке бассейна со дна бассейна.

Колебания воды создают впечатление, как будто точечные огни дрожат (мерцают). Но у больших огней возникает лишь рябь по краям, поэтому они остаются стабильными.

Подобным образом мерцают звезды: этот эффект создается из-за их малых размеров по сравнению с «массивностью» атмосферы; планеты же остаются «немигающими», потому что они большие.

Мерцание звезд размывает изображения в телескопах. Единственный путь, который позволит получить более четкие изображения заключается в том, чтобы подняться над атмосферой (Космический телескоп Хаббл).

По-другому скомпенсировать мерцание можно за счет изгибания поверхности тонкого телескопического зеркала много раз в секунду (адаптивная оптика).

Точечные источники радиоволн, такие как «пульсары», также мерцают (межзвездные сцинтилляции) в связи с турбулентностью межзвездного газа.

<p>68. Как мы можем узнать расстояние до звезды?</p>

Если при наблюдении из двух разных точек объект заметно смещается, то он близко; если смещение очень мало, то он расположен далеко.

Проверьте сами. Держите палец близко и посмотрите на него одним глазом, затем другим. Смещение заметно. Сделайте то же самое, когда палец расположен далеко. Смещение мало.

Этот эффект (параллакс) может показать расстояние до звезды. Наблюдайте за звездой из двух точек на противоположных сторонах орбиты Земли (потребуется шесть месяцев между наблюдениями).

Говорят, что звезда на расстоянии 1 парсека (3,26 световых лет) при наблюдении за шесть месяцев меняет направление на 1 угловую секунду (1/3600 °).

Проблема метода: турбулентность атмосферы «смазывает» звездные изображения на 0,5 угловой секунды или больше, поэтому с помощью параллакса можно определить расстояния только до ближайших звезд.

Решение проблемы: выйти в космос. Европейский спутник Гиппарк (Hipparcos)использует параллакс, чтобы установить расстояние до 100 000 звезд, расположенных более чем в 100 световых годах от нас.

Чтобы измерять большие расстояния, необходимо идентифицировать звезды с известным собственным блеском. Если одна звезда слабее другой, то она дальше.

Есть ли звезды, собственный блеск которых известен? Да. «Переменные цефеиды» — звезды высокой светимости, которые пульсируют как бьющиеся сердца.

Решающее открытие сделала Генриетта Ливитт в 1912 [16]: цефеиды, которые, по сути, ярче других звезд, изменяют свой блеск в течение длительного периода времени.

Определение расстояния до цефеиды: 1) временной «период» изменения блеска —> собственная светимость; 2) сравнение собственной и видимой светимостей —> расстояние.

В 1923 Эдвин Хаббл обнаружил цефеиды в туманности Андромеды и заключил, что это была островная «галактика», далекая от Млечного Пути (2,5 млн световых лет).

Космический телескоп НАСА Хаббл определил цефеиды в галактике М100, охватывая звездные расстояния до 56 млн световых лет от Солнца.

<p>69. Откуда мы знаем, из чего состоят звезды?</p>

В 1835 философ Огюст Конт заявил, как о чем-то совершенно бесспорном, что наука никогда не разгадает состав звезд. Он был неправ.

Природа благосклонна к нам. Атомы каждого элемента излучают свет, характеризующийся цветом/длиной волны, что позволяет определить химические элементы в составе звезд.

Уникальный «спектральный» отпечаток существует потому, что каждый атом конкретного химического элемента имеет уникальное расположение электронов на орбите.

Когда электрон перескакивает с одной орбиты на другую, излучается порция света. Ее энергия равна разности между энергиями электрона на двух орбитах.

Затруднение: звезды такие горячие, что у некоторых атомов большинство или все электроны оторваны. Таким образом, элемент, даже распространенный, может не обнаруживаться.

До того, как это было понято, люди ошибались, полагая, что Солнце состоит из железа, так как спектральные отпечатки железа были наиболее яркими.

В 1925 Сесилия Пейн совершила прорыв. Из состава солнечного света она вывела, что водород и гелий — 2 редких на Земле газа [17](элемента) — составляют 98 % массы Солнца.

Пейн обнаружила состав Вселенной: 98 % всех атомов в космосе — водород и гелий. Все остальное составляет только 2 %.

Несмотря на то что Пейн написала важнейшую в XX в. диссертацию по астрономии, ее имя практически неизвестно [18]. Она пострадала оттого, что была женщиной-ученым в мужской среде.

Люди постепенно поняли, что в этих же пропорциях элементы присутствуют везде. Это означает, что процесс возникновения элементов универсален.

Но где же печь, в которой выплавлены элементы, из которых состоят наши тела? Укажем сначала на звезды, потом на Большой взрыв и потом снова на звезды.

Фред Хойл с соавторами описали в монументальном труде (1957) точные «ядерные» процессы, которые привели к рождению элементов внутри звезд.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука