Читаем Твиты о вселенной полностью

Липперхи родился в ~1570 в г. Везель, Германия. Жил/работал в Мидделбурге — голландском портовом городе со знаменитой на весь мир стекольной промышленностью — выгода для торговли.

2 октября 1608 Липперхи продемонстрировал изготовленный им оптический прибор принцу Морицу и Голландским Генеральным Штатам в Гааге. Принц был восхищен.

Основная причина: война между голландской республикой и испанской империей. Телескоп на башне поможет обнаружить войска противника издалека. Также может быть полезен на море.

Но были и другие, кто тоже заявил об изобретении: Захария Янсен (еще один мастер-оптик из Мидделбурга) и ученый Якоб Метиус из Алкмаара.

Результат: патент никому не был выдан. Хотя благодаря демонстрации Липперхи информация об изобретении быстро распространилась по Европе.

Летом 1609 английский астроном Томас Харриет получил первые телескопические изображения Луны. Не опубликованы; обнаружены только в XX в.

Немного позже, итальянский физик/астроном Галилео Галилер, услышал о голландских изобретениях. Он быстро изготовил улучшенные телескопы.

Галилей открыл лунные горы, солнечные пятна, спутники Юпитера, фазы Венеры, «уши» Сатурна (оказавшиеся кольцами этой планеты) и т. д.

Публикация Галилеем его открытия в Sidereus Nuncius(«Звездный Вестник», март 1610) знаменует рождение современной телескопической астрономии.

Впоследствии телескоп был значительно улучшен, в частности, Иоганном Кеплером (Германия) и Христианом Гюйгенсом (Нидерланды). Последовало больше открытий.

<p>123. Как работает телескоп?</p>

Телескоп буквально собирает звездный свет в фокусе. Линза (хрусталик) глаза делает то же, но телескоп собирает больше света, поэтому изображение ярче/подробнее.

Первые телескопы использовали вогнутые линзы для фокусировки звездного света. Свет отклоняется или «преломляется» стеклом, так что эти телескопы известны как рефракторы.

Хороший пример: зажигательное стекло. Солнечный свет концентрируется линзой. За счет фокусировки света интенсивность достаточно высока, чтобы зажечь бумагу или фитиль.

Фактически линзы создают маленькое изображение Солнца (или другого источника света) в своей «фокальной плоскости». Проверьте сами с зажигательным стеклом и настольной лампой.

Линзы телескопа также создают изображение наблюдаемого объекта в фокальной плоскости. Чтобы увидеть изображение в деталях, необходимо использовать увеличительное стекло (окуляр).

Так, рефрактор состоит из двух основных элементов: линз объектива для фокусировки света и смотрового отверстия (окуляра) для наблюдения изображения, обычно на конце трубки…

Недостатки рефрактора: разные цвета фокусируются немного по-разному, поэтому изображения звезд окрашены по краям (хроматическая аберрация).

В 1668 Исаак Ньютон изобрел рефлектор (отражатель). Вместо линзы использовал вогнутое зеркало как объектив для фокусировки звездного света, без цветовых дефектов.

Зеркало телескопа искривлено как зеркало для бритья и так же создает изображение источника света в фокальной плоскости Проверьте на себе с лампой в ванной.

Преимущества зеркала: 1) необходима только одна совершенная основная поверхность; 2) может быть большим и не испытывать деформации, так как возможно крепление с обратной стороны.

Поэтому все большие телескопы — рефлекторы. Самый большой линзовый телескоп, со 102-см линзой, был построен в Йеркской обсерватории около Чикаго в 1897.

Маленькие дополнительные плоские зеркала могут использоваться для удобства наблюдения. Но главный принцип телескопа выполняется всегда: объектив + окуляр (или камера).

Телескоп должен: обеспечивать стабильную установку и, в идеале, отслеживать звезду, поскольку вращение Земли заставляет ее перемещаться по небу.

Экваториальная монтировка: легкое отслеживание звезды, но громоздкость конструкции. Альт-азимутальная монтировка: компактность, но необходимость компьютерного управления для контроля перемещения одновременно вокруг двух осей.

<p>124. Почему чем больше, тем всегда лучше для телескопов?</p>

Это хорошо не только потому, что нечто большое всегда вызывает у людей зависть. Большие телескопы (размер линзы/зеркала) выявляют более подробную информацию и позволяют обнаружить слабые объекты.

Зрачок, через который свет проникает в глаз, крошечный (максимум 5 мм). Таким образом, звезда должна быть яркой, чтобы обеспечить достаточно света для фиксации изображения на сетчатке.

Если ваш зрачок оказался гораздо больше, ваши глаза могут собрать больше света звезд и увидеть много слабых звезд. Телескоп представляет собой большой зрачок.

Представьте пустую винную бутылку, оставленную под дождем. Ей нужно время, чтобы заполниться. Поставьте воронку в ее горлышко, теперь она заполняется быстро.

Большие линзы или зеркала собирают больше звездного света, поэтому большие телескопы позволяют видеть слабые объекты, или те же объекты, расположенные гораздо дальше.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука