Достоинствами линейного стабилизатора являются простота конструкции (в большинстве случаев это микросхема с тремя выводами), малый вес и габариты, дешевизна, универсальность, отсутствие внешних компонентов схемы. Большинство современных микросхем стабилизаторов оснащены встроенной защитой от короткого замыкания и перегрева, иногда от переполюсовки. Поэтому линейные интегральные стабилизаторы по-прежнему широко применяются и во многих случаях незаменимы, поскольку для миниатюрных и маломощных устройств использование более сложных стабилизаторов технически и экономически нецелесообразно. Однако с ростом потребляемого тока или разности входного и выходного напряжений эффективность линейных стабилизаторов катастрофически снижается.
Традиционно принято встраивать интегральные линейные стабилизаторы на плату регулятора оборотов бесколлекторного двигателя. Эта традиция пошла от самолетной практики, для упрощения конструкции и экономии места. В большинство регуляторов оборотов для мультикоптеров их также продолжают встраивать, в результате мы по умолчанию имеем на борту четыре одинаковых источника +5 В, по одному от каждого из регуляторов.
К сожалению, использование этих источников для питания бортовой аппаратуры не всегда приемлемо. Во-первых, регулятор оборотов мотора является источником импульсных помех, проникающих за источник питания. И если для питания полетного контроллера это не критично, то при питании видеокамеры или видеопередатчика эти помехи могут быть заметны на изображении и в канале звука. Во-вторых, регуляторы оборотов и без того нагреваются в полете, иногда довольно сильно. И если нагрузить до предела один из встроенных стабилизаторов, то соответствующий регулятор может перегреться.
Допускается соединять выходы всех встроенных стабилизаторов +5 В параллельно, тем самым равномерно распределяя нагрузку между ними. Это допустимо, если нужно питать только полетный контроллер и приемник. Видеокамеру и аппаратуру видео- и аудиоканала все-таки лучше питать от независимого стабилизатора напряжения, даже если он подключен к той же самой силовой батарее.
Примечание
Еще один важный нюанс: некоторые полетные контроллеры требуют повышенного напряжения питания, не ниже 5,25 В (но не выше 5,6 В) из-за того, что напряжение питания падает на последовательно включенных защитных диодах схемы контроллера. Но на выходе ВЕС, встроенных в регуляторы оборотов, под нагрузкой чаще всего получается 4,85-4,90 В. При таком напряжении питания, например, полетные контроллеры MultiWii AIOP v.2 начинают непредсказуемо сбоить и зависать. Некоторые производители специализированных мультикоптерных регуляторов оборотов учли эту проблему и выпускают регуляторы с повышенным выходным напряжением встроенного ВЕС.
Если у ваших регуляторов оборотов заниженное напряжение источников +5 В, питайте от них сервомашинки, подсветку и т. д., а для питания контроллера используйте отдельный источник.
Импульсные стабилизаторы-преобразователи
В импульсных стабилизаторах постоянное входное напряжение при помощи встроенного генератора и силового ключа преобразуется в импульсы высокой частоты с регулируемой длительностью при неизменной частоте, отношение периода повторения электрических импульсов к их длительности называется скважностью S, а обратная величина 1/S — коэффициентом заполнения. Чем выше коэффициент заполнения, тем больше количество энергии, передаваемой со входа стабилизатора на выход, и тем выше напряжение на выходном каскаде.
Поскольку напряжение регулируется только за счет длительности активных импульсов, а все остальное время ток через силовой ключ регулятора не протекает, то потери энергии минимальны и КПД импульсного регулятора значительно выше, до 95 %.
В отличие от линейного стабилизатора, работающего только с понижением напряжения, импульсные стабилизаторы могут быть как понижающие (Step-Down), так и повышающие (Step-Up), а по типу схемы бестрансформаторные (Switched ВЕС) и трансформаторные (UBEC). Чаще используются