Читаем Творчество в математике. По каким правилам ведутся игры разума полностью

Многие великие математические творения связаны с серьезными изменениями в развитии математики. Иногда очередное открытие или новая теорема помогали решить проблему, а иногда — противоречили общепринятой точке зрения. Некоторые величайшие математические творения стали настоящим вызовом разуму. То, что до определенного момента считалось иррациональным и бессмысленным, начинало использоваться для решения практических задач, чего раньше нельзя было и представить. Наиболее интересным примером, возможно, являются комплексные числа: как квадрат некоторого числа может быть отрицательным числом? И какой смысл имеют подобные числа?

Некоторые исследователи уверены, что математика развивается линейно. Однако эта точка зрения небесспорна. Линейное развитие математики, возможно, является лишь кажущимся, лишь следствием, подобно аксиомам и теоремам, которые представляют собой видимый итог длительных размышлений.


Счет


Счет состоит в определении числа элементов, образующих некоторую группу. Оценить число элементов в малых группах можно на глаз — чтобы увидеть, что группы из двух, трех или четырех элементов отличаются между собой, счета не требуется.

Однако различить группы, состоящие из более чем четырех или пяти элементов, уже не так просто. В этом случае счет необходим.

К первым разновидностям счета относятся попытки сопоставить числа с различными частями человеческого тела. Племена, обитающие на разных материках, использовали и до сих пор используют части тела для определения числа элементов множества (на языке математики это число называется мощностью множества).

Стадо или мешок рисовых зерен — это конечные множества. Натуральные числа также образуют множество, однако оно является бесконечным. Различить два конечных множества нетрудно: достаточно подсчитать число их элементов. Разница между множествами будет заключаться в том, что их мощность будет описываться разными числами. Далее вы увидите, что в случае с бесконечными множествами все обстоит совершенно иначе.

Подсчет имеет смысл, когда речь идет о конечных величинах. При этом мы избавляемся от отсылок к осязаемым предметам и сопоставляем каждой величине некий символ (устный или письменный). В отличие от счета на пальцах каждый символ сам по себе обозначает определенную величину. Такими символами являются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0, которыми мы обозначаем базовые величины.

Важным шагом стало определение основания системы счисления. Подсчет большого количества предметов, при котором для каждой отдельной величины используется свое обозначение, не просто трудоемок, но практически невозможен, так как рано или поздно все обозначения закончатся. Кроме того, наша память также имеет пределы. С изобретением позиционной системы счисления по некоторому основанию счет перестал быть чем-то экстраординарным. В позиционной системе счисления по основанию 10, которую используем мы, для представления любого числа, сколь бы велико оно ни было, применяется всего десять символов. Слова, которыми мы обозначаем числа, определяются этой системой счисления, и этих слов совсем немного. Отдельными словами обозначаются числа 0, 1, 2, 10, 20, 30, … а также 100, 1000, 1000000. Названия всех остальных чисел составляются из этих же слов.

* * *

СЧЕТ

Системы счета существовали во всех культурах. В большинстве из них определенным числам соответствуют части тела — это так называемый телесный счет. В 1992 году исследователь Глен Гин выделил свыше пятисот различных систем счета, которые бытовали на острове Новая Гвинея. На карте обозначены регионы, в которых используется телесный счет.



ТЕЛЕСНЫЙ СЧЕТ

Пример телесного счета аборигенов Торресова пролива, отделяющего Австралию от Новой Гвинеи, согласно Джорджу Ифра (1994). Обратите внимание на асимметричность счета относительно тела человека. При счете конечности и пальцы рук и ног обходятся по кругу.



* * *

При этом на практике обычно используются приемы и приспособления, упрощающие счет и позволяющие избежать ошибок. Риск ошибиться при счете тем больше, чем больше величина, поэтому мы обычно считаем парами, пятерками или десятками.

Почему нам удобнее считать парами, а не тройками или семерками? Для счета парами достаточно повторять последовательность 2, 4, 6, 8, 10, добавляя на каждом этапе единицу слева, то есть прибавляя десяток.



Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги