Читаем Творчество в математике. По каким правилам ведутся игры разума полностью

Исследователи математики и науки в целом (Курант и Роббинс, 1996; Пойа, 1988; Дэвис и Херш, 1989; Лакатос, 1994) говорят об одних и тех же аспектах творчества: воображение, наблюдение, эксперимент, интуиция, аналогия, обобщение, рассуждение, стратегия, везение. Среди этих аспектов выделим шесть основных: наблюдение, интуиция, эксперимент, гипотеза, аналогия и подтверждение.

Далее мы попробуем рассмотреть простую задачу в этих аспектах и показать, как они помогают найти решение. Мы поговорим о квадратах натуральных чисел.


Наблюдение

Наблюдение зависит от наблюдателя. Наблюдая, мы можем распознать только то, что нам уже известно. Если мы хотим увидеть что-то неизвестное, нужно обращать внимание на все, что удивляет нас, и при этом два наблюдателя будут видеть одно и то же явление по-разному. Наблюдатель также обычно замечает изменения в привычной обстановке, но не может сказать, какие именно изменения произошли.

В любом случае и при любых обстоятельствах наблюдение — это не просто взгляд на вещи, это умственный процесс, итогом которого обычно является описание или объяснение увиденного.

В математике результатом наблюдений обычно являются закономерности. Какую закономерность можно увидеть, если взглянуть на квадраты первых натуральных чисел?



Взяв за основу ряд 1, 2, 3, 4, 5, …, мы создали ряд 1, 4, 9, 16, 23, … Какими особенностями обладает полученный ряд? Его члены не являются последовательными числами. Они кажутся случайными, однако были получены по определенному правилу.

Чтобы лучше понять полученное, снова обратим внимание на исходный ряд.

Почему мы говорим, что числа 1, 2, 3, 4, 3… являются последовательными? Потому что разница между каждым числом и соседним с ним всегда равна 1. Перенесем это наблюдение на второй ряд. Чему равны разности между его соседними членами?



Эврика! Разности между квадратами чисел — это нечетные числа: 1, 3, 5, 7, 9.

* * *

НАБЛЮДЕНИЕ ЗАКОНОМЕРНОСТЕЙ

Наблюдение закономерностей в числовых рядах порой оказывается рискованным. На вопрос о том, каким будет следующее число в ряду 1, 2, 3, 4, 5, можно дать несколько ответов:

• следующим будет 6, так как исходный ряд — это последовательность натуральных чисел:

1, 2, 3, 4, 5, 6…

• следующим будет 1, так как в этом ряду повторяются первые пять чисел:

1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, …

• следующим будет 8, так как в этом ряду чередуются нечетные числа и степени двойки:

1, 2, 3, 4, 5, 8… = 1, 21, 3, 22, 5, 23….

Словом, ответ на вопрос, как отмечал Витгенштейн, может быть любым, поскольку многоточия позволяют подставить на место следующего числа в ряду абсолютно любое число.

* * *

Интуиция

По результатам наблюдений можно интуитивно определить некое правило, которое можно будет подтвердить экспериментально.


Эксперимент

В число обязательных требований к эксперименту входят подконтрольность и воспроизводимость. В математике это легко исполнимо. Ничто не может помешать нам заново вычислить квадраты первых натуральных чисел.




Эксперимент подтверждает выявленную закономерность. Вычислив разницу между квадратами первых 13 натуральных чисел (включая 0), мы получили первые 12 нечетных чисел: 1, 3, 3, 7, 9, 11, 13, 13, 17, 19, 21, 23.


Гипотеза

Наша гипотеза заключается в том, что найденная закономерность выполняется для любой последовательности натуральных чисел. Здесь мы переходим от конечного к бесконечному, от частного к общему. Наша гипотеза будет формулироваться так:

Последовательностью разностей между квадратами натуральных чисел является последовательность нечетных чисел.

Но как мы можем подтвердить эту гипотезу? Невозможно ведь провести эксперимент на всем бесконечном множестве натуральных чисел.


Аналогия

С другой стороны, возникает вопрос: понимаем ли мы на самом деле природу наблюдаемого явления? Вычисления показывают, что результаты должны подчиняться некоторой закономерности. Но понимаем ли мы ее? Понимаем ли мы, почему разность между квадратами соседних чисел обязательно является нечетным числом?

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги