Итак, мы обнаружили новые аспекты, связанные с творчеством: это логика, эксперимент и практика. Тот, кто творит, неустанно мыслит, а тот, кто не творит, останавливается на том, о чем только что размышлял, и довольствуется тем, что ему не нужно продолжать размышления. Ему сложно перейти от одного представления к другому. В мыслях того, кто творит, идеи легко переходят из одной области в другую, и он может одновременно рассматривать ситуацию с нескольких точек зрения, не выделяя какую-то из них. Способность создавать новые определения является фундаментальной для понимания вещей, поскольку лишь тогда, когда мы четко поняли некую идею, мы можем говорить об истинном знании. Многое, что было увидено, пережито и показано экспериментально, остается неизвестным, поскольку до сих пор не понято. Те, кто творит, могут проще сформулировать новые задачи на основе известных явлений и причинно-следственных связей и приступить к поискам решения.
Мы видим, как в размышлениях о творчестве появляется новый фактор — понимание, который применительно к математике может иметь первостепенную важность. Тот, кто не понимает задачу, не сможет решить ее, и, возможно, это неожиданное озарение, о котором мы говорили выше, возникает именно тогда, когда к нам приходит четкое понимание рассматриваемого события или явления. Таким образом, на смену выражениям «эврика!» и «я вижу» приходит новое, более глубокое: «я понимаю». Аналогия, эксперимент, практика, логика, понимание и постановка задач — это важнейшие компоненты эвристики — науки, изучающей неосознанное, творческое мышление.
Способность видеть нужные взаимосвязи можно развить. Для этого необходимо перебирать различные альтернативы, пробовать и ошибаться, возвращаться назад и идти другим путем, иными словами, экспериментировать. Так мы учимся выбирать подходящие пути и отклонять неподходящие, не проходя их все до единого. Это искусство изобретать, открывать пути решения математической задачи известно под названием «эвристика».
Наибольших успехов в ней достиг венгерский математик первой половины XX века Дьёрдь Пойа. «Да, математика имеет две стороны: с одной стороны, это точная наука Евклида, с другой стороны, это еще и нечто большее, — говорил он. — Математика, представленная в стиле Евклида, кажется систематической и дедуктивной наукой, однако математика как процесс больше напоминает экспериментальную, индуктивную науку. Оба ее аспекта столь же древние, как и сама математика». Именно это «нечто большее», как вы увидите далее, очень тесно связано с творчеством в математике. В книге «Как решать задачу» Пойа приводит четыре основных этапа решения математической задачи.
1. Понять задачу.
2. Составить план решения.
3. Осуществить план решения.
4. Оглянуться на полученное решение и проанализировать его.
Пойа различает задачи на доказательство и задачи на поиск решения. Задача, рассмотренная в предыдущем разделе, относится ко второму типу. В конце этой главы мы приведем пример эвристического решения задачи первого типа.
* * *
Этот венгерский математик разработал основные приемы решения задач. Гипотеза Пойа, сформулированная в 1919 году, гласит, что большинство натуральных чисел, меньших любого заранее заданного числа, разлагаются на нечетное количество простых множителей. Эта гипотеза была опровергнута в 1958 году, однако минимальный контрпример был найден лишь в 1980-м: это число 906150257.
* * *
Творческий характер эвристического метода подчеркивали Дэвис и Херш: «Эвристический пример доказательства и опровержения, предложенный Лакатосом… может быть применен при создании новой математики» (Дэвис и Херш, 1989, стр. 216). Чтобы применить эвристический метод подобным образом, требуется смена точки зрения и немалая доля мужества — в том числе потому, что распространенное представление о математике не согласуется с тем, что представляет из себя математика на самом деле.
Рассмотрим в качестве примера одну из фундаментальных теорем геометрии на плоскости, которая гласит, что сумма углов треугольника равна развернутому углу. Иными словами, в любом треугольнике с углами
Совместим ли мы вершины всех трех углов треугольника в одной точке и проверим, равна ли их сумма развернутому углу, или пойдем путем эксперимента, вырезав ножницами три угла треугольника из бумаги и расположив их требуемым образом, — все эти действия доказывают не теорему, а лишь частный случай.