Читаем Творчество в математике. По каким правилам ведутся игры разума полностью

Возникает вопрос: почему одни узлы бесконечные, а другие — нет? Перед тем как начать поиск ответа, рассмотрим, как строятся такие узлы. Их основой является сетка с квадратными ячейками, на сторонах которых выбирается последовательность точек, через которые проходит нить узла:



За счет этого узлы можно описывать числом вершин на каждой из сторон сетки, через которые проходит нить узла. Первый из улов, представленных выше, — узел 3 x 2, второй — 3 x 3, последний — 6 x 4. Узел 3 x 2 располагается на сетке размером 6 х 4 и проходит через вершины 1–3–3 в горизонтальных рядах и через вершины 1–3 — в вертикальных рядах. Сетка 6 x 4 понимается как (1 + 2·2 + 1) х (1 + 2 + 1). Остальные узлы описываются аналогично. Узел 3 x 3 располагается на сетке 6 х 6 = (1 + 2·2 + 1) х (1 + 2·2 + 1), узел 6 x 4 — на сетке 12 х 8 = (1 + 2·5 + 1) х (1 + 2·3 +1).

Можно сказать, что ответ на вопрос, будет ли узел бесконечным, зависит от числа вершин, через которые проходит нить на каждой стороне сетки. Узел 3 х 2 является бесконечным, так как образован одной нитью. Узел 3 х 3 не является бесконечным, так как состоит из трех нитей. Узел 6 x 4 также не является бесконечным и состоит из двух нитей.

В чем же ключ к решению задачи? Нить смещается влево, вправо, вверх и вниз. Если бы мы не ограничивались одним прямоугольником, а продолжили узел дальше по вертикали и по горизонтали, то смогли бы понять суть проблемы. Рассмотрим узел (3 х 2):



Мы начинаем с точки 1, затем, сместившись на две единицы вправо, попадаем в 3, затем в 2 и наконец снова в 1. Получается числовая последовательность, которая циклически повторяется до бесконечности:

[1, 3, 2] = 1, 3, 2, 1, 3, 2, 1, 3, 2, 1…

На сетке размером (4 х 2) требуется два таких цикла:


В первом случае мы перепрыгиваем через две клетки. Полный цикл завершается после шести шагов, когда мы возвращаемся в исходную точку 1. Мы обошли все цифры 1, 2 и 3. Во втором случае для обхода всех цифр требуется два цикла:



Почему? Потому что 4 делится на 2. Если мы начинаем цикл в точке 1, то мы всегда будем проходить через точки 1 и 3 и никогда — через 2 и 4. Для этого потребуется новый цикл с началом в точке 2. В предыдущем случае цикл завершается после 6 = НОК (3, 2) этапов, и требуется всего один цикл, так как НОД (3, 2) = 1.

Это же происходит и в примере с сеткой 6 x 4, где НОД (6, 4) = 2 цикла, и на сетке 3 х 3, где число циклов равно 3 = НОД (3, 3). Подведем итог.

Теорема: На сетке размером (m, n) число циклов равно НОД (m, n).

Следствие 1: Если m и n — взаимно простые, то на сетке (m, n) имеется единственный бесконечный цикл.

Следствие 2: На сетке размером (m, n) число петель равняется 2 х (m + n).


Задача садовника: равносторонний треугольник как частный случай равнобедренного


При посадке деревьев в шахматном порядке саженцы располагаются в вершинах воображаемых равносторонних треугольников — это гарантирует, что все деревья будут располагаться друг от друга на одинаковом расстоянии:



Если математику дать задачу о построении подобной сетки с треугольными ячейками, он, скорее всего, начнет искать способ построения равносторонних треугольников, применимый на практике, и буквально со стопроцентной вероятностью предложит евклидово решение, приведенное в предложении 1 книги I «Начал».



Предложение 1 из «Начал» Евклида: построение равностороннего треугольника на данном отрезке АВ.


Для этого построения нужно заменить циркуль веревкой, длина которой равна длине стороны искомого треугольника. Садовод должен обходить участок, проводя дуги окружностей и отмечая точки их пересечения.

Сначала он отметит точки на одной прямой, равноудаленные друг от друга:



Затем, использовав каждую из этих точек в качестве центра окружности, он проведет дуги, которые пересекутся в вершинах равносторонних треугольников:



В результате садовод определит, где нужно посадить деревья.

Так эту задачу решил бы математик. Однако, согласно Жиль-Альберу (1999), садоводы строят сетку из треугольных ячеек следующим образом:

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги