Читаем Творчество в математике. По каким правилам ведутся игры разума полностью

Орбита точки х = 0,5 образована убывающей ограниченной последовательностью чисел, которая стремится к 0. Существуют фиксированные орбиты, в частности для х = 0 и = 1. Орбиты некоторых точек уходят в бесконечность, например, это справедливо для точки x = 2:

х = 2

f(2) = 22 = 4

f(4) = 4 = 16

f(16) = 162 = 256

=> Орбита точки 2 = {2, 4, 16, 256…} —> 

Компьютер позволил увидеть, что произойдет с похожей функцией на поле комплексных чисел:


Результат оказался неожиданным и с математической, и с эстетической точки зрения, так как множества точек, не уходившие в бесконечность, принимали при различных значениях с разнообразные и удивительные формы. Эти точки образуют так называемое множество Жюлиа. Комплексные значения с, для которых множество Жюлиа является связным, то есть не разбито на несколько частей или фрагментов, образуют множество Мандельброта, которое выглядит следующим образом:



Математики смогли увидеть множество Мандельброта лишь в 1980 году, и до этого им не приходилось сталкиваться со столь же сложным объектом. Помимо фрактальной природы, ввиду которой части этого множества подобны целому, это множество обладает безграничным разнообразием. Если мы рассмотрим увеличенное изображение любой его части, то увидим, что одни и те же фигуры повторяются в нем снова и снова:



Множество М обладает самоподобием и одновременно изменчивостью бесконечной спирали. Оно являет собой прекрасный пример математического творчества.

С точки зрения топологии фрактальная кривая отличается от традиционных. Принципиальное отличие фрактальных кривых состоит как раз в их бесконечном самоподобии: если увеличить часть традиционной кривой в окрестности любой точки, она будет представлять собой отрезок, в то время как любой увеличенный фрагмент фрактальной кривой, напротив, будет иметь ту же форму, что и исходная кривая. В результате размерность фрактальных объектов не выражается целым числом от 1 до 3, в отличие от традиционных кривых. Размерность кривой Коха, например, равна 1,26186… По сути, несмотря на то что компьютер позволяет наглядно представить различные этапы построения фрактальных объектов, мы никогда не сможем увидеть результат этого процесса, так как он бесконечен. Увидеть окончательные очертания фрактальных кривых нельзя. Когда мы пытаемся поближе рассмотреть их, то видим, что они меняются и выглядят не так, как нам казалось раньше.

* * *

СЪЕДОБНЫЙ ФРАКТАЛ

Фракталы столь часто встречаются в реальном мире, что можно свободно говорить о фрактальной геометрии природы. Однако в природе фракталы обычно обладают не более чем четырьмя уровнями самоподобия, как, например, ветви растений, нервные окончания или подземные водоносные слои. Фрактальная размерность — это характеристика, позволяющая обнаруживать костные патологии и описывать электроэнцефалограммы.

Цветная капуста, изображенная на иллюстрации, в действительности является гибридом, который впервые был обнаружен в Италии в XVI веке. Ее структура представляет собой удивительный пример фрактальной геометрии в природе. Кочан капусты (первый уровень) состоит из уменьшенных копий самого себя (второй уровень), расположенных в форме спирали. Каждая из них, в свою очередь, также состоит из уменьшенных копий самой себя, которые вновь располагаются по спирали (третий уровень). Это же подобие наблюдается и на следующем, четвертом уровне.



Глава 3

Вопросы, которые задает мир

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги