Читаем Творчество в математике. По каким правилам ведутся игры разума полностью

Двумерные предметы не имеют толщины. Математическое творение Борхеса состоит в том, что он доказал, что у диска Одина нет толщины, так как у него нет одной из боковых сторон. Дровосек никак не может найти диск, потому что он, скорее всего, упал невидимой гранью вверх.


Улицы Доротеи


Отсылки к математике содержатся и во многих произведениях Итало Кальвино:

«Космикомические истории», «Раздвоенный виконт», «Незримые города». Так, его совершенно нематематический роман «Незримые города» содержит множество связей с различными математическими идеями. На страницах романа Марко Поло описывает города своей империи Кубла-хану. Каждый город носит женское имя, и мы выбрали в качестве примера фразу из описания города Доротея:

«О городе Доротее можно повествовать двояко: либо рассказывая о том, что над ее стенами вздымаются четыре башни, а к семи воротам ведут подъемные мосты, переброшенные через ров; четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов, в каждом из которых находится по триста домов и семьсот дымоходов…»[6]

При описании архитектурных элементов города Кальвино использует конкретные величины: четыре башни, семь ворот, четыре канала с водой зеленого цвета, девять кварталов, 300 домов и 700 дымоходов. Неизбежно возникает желание провести некоторые расчеты. Так, всего в Доротее 9·300 = 2700 домов и 9·700 = 6300 дымоходов, что означает, что во многих домах больше двух дымоходов.

Не будем сосредотачивать внимание на этих вычислениях, а обратимся к топологическому аспекту описания, которое гласит, что «четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов».

Допустим, что каналы имеют форму прямых линий. Существует множество способов разделить город на девять кварталов четырьмя каналами. Можно проложить каналы так, что город окажется разделенным на одиннадцать кварталов, как показано на следующих рисунках:



Возникает вопрос: каково максимальное число кварталов, на которые можно разделить город прямыми улицами или каналами? Иными словами, каково максимальное число областей, на которое можно разделить часть плоскости отрезками?

Чтобы ответить на этот вопрос, обратим внимание, что одна улица делит город всего на два района, а максимальное число районов образуется тогда, когда новая прямолинейная улица пересекает все существующие районы:



При прокладке первой улицы образуется один новый район, при прокладке второй улицы — два, третьей — три и т. д. Таким образом, при прокладке n-й улицы образуется n новых районов. Следовательно,



Иными словами, максимальное число районов В(n) равно сумме n и числа районов, полученных на предыдущем этапе, В(n — 1):


При подобном расположении улиц город будет выглядеть примерно так:



Образующаяся кривая — так называемая эвольвента В(n) для n —>  кривая — гипербола, которая описывается уравнением:

х + у2 + 2ху — 4у = 0.

Если же улицы необязательно должны быть прямыми, то максимально возможное число районов будет равно В(n) = 2n. На следующем рисунке изображен план города, который делится шестью улицами на 64 района:



Порядок среди хаоса: теорема Вариньона


Теорема Вариньона — это знаменитая теорема планиметрии, описывающая удивительный феномен. В классификации Дьёрдя Пойа это задача на доказательство.

Эта теорема иллюстрирует два важных принципа: во-первых, доказательство, которое не объясняет явление, не является достаточным, во-вторых, цель творческого подхода в математике заключается в том, чтобы понять явление, а для этого необходимо всестороннее доказательство. Иными словами, иногда «доказать» не означает «объяснить».

Выберем четыре произвольные точки плоскости Р, Q, R, S и соединим их отрезками, образуя четырехугольник. Обозначим середины его сторон точками А, В, С, D. Соединим эти точки так, чтобы получился второй четырехугольник внутри первого. Замечаете ли вы нечто особенное?



Повторите построение для других исходных точек, и вы увидите то же самое.

Перед нами — необычная ситуация. Кажется, что геометрия не подчиняется здравому смыслу. Какую бы форму ни имел исходный четырехугольник, для него всегда будет выполняться утверждение:

четырехугольник, вершины которого совпадают с серединами сторон произвольного четырехугольника, является параллелограммом.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги