Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Коды, или числа Гёделя, приводят не только к тому, что арифметическое высказывание можно связать с другим высказыванием, но и к возможности говорить о доказуемости этого высказывания. Например, при заданном утверждении Р мы можем записать арифметическое высказывание, в котором говорилось бы, что "Р недоказуемо". Посмотрим, как достичь этой цели.

Как только выбрано множество аксиом, можно без ошибки определить, какие высказывания доказуемы, а какие нет (хотя это может быть и очень сложно на практике). Каждому доказуемому высказыванию, в свою очередь, соответствует число Гёделя. Итак, у нас есть множество чисел, образованное кодами доказуемых высказываний.

Гёдель доказал, что оно характеризуется четко определенным арифметическим свойством. Другими словами, "быть кодом доказуемого высказывания" — свойство, выраженное на языке арифметики (который использует в качестве базовых элементов сложение, умножение и логические операции). Другими словами, свойство "х — это код доказуемого высказывания" может сводиться к числовому свойству, выраженному в терминах сумм, произведений и логических операций. Как обычно говорят, понятие доказуемости можно выразить.

Подчеркнем: именно эта часть аргументации Гёделя зависит в основном от того факта, что программа Гильберта допускает только доказательства, проверяемые алгоритмически. Если бы были разрешены другие методы рассуждения (поговорим о них в следующей главе), то не было бы возможности гарантировать, что свойство "х — это код доказуемого высказывания" может быть выражено в арифметических терминах.

Все принципы математики сводятся к принципам логики.

Уиллард ван Орман Куайн. "С точки зрения логики"

Как Гёдель доказал, что понятие доказуемости можно выразить? Для начала он доказал, что любое числовое свойство, проверяемое алгоритмически (например, "быть простым числом", "быть четным" или "делиться на 9"), всегда можно выразить с помощью сумм, произведений и логических операций.

Итак, то, что высказывание Р доказуемо, означает, что существует доказательство (принимаемое программой Гильберта), в котором Р — это конечное высказывание. В качестве примера мы уже приводили доказательство того, что "4 = 2 + 2" на основе аксиом "S(x + у) = х + S(y)" и "х + 1 = S(x)". Вспомним, что этому доказательству, с учетом последовательности высказываний, соответствует число Гёделя 2414871965597. Вспомним также, что "4 = 2 + 2" соответствует число 67. В переводе на язык кодов доказуемость "4 = 2 + 2" означает, что существует конечная последовательность высказываний (ее код 2414871965597), являющаяся доказательством, в котором конечное высказывание имеет код 67.

"Быть кодом доказательства" — это свойство, проверяемое алгоритмически, поскольку при заданном коде для осуществления проверки компьютер сначала использовал бы программу, восстанавливающую последовательность высказываний, соответствующую этому коду, а затем применил бы к этой последовательности высказываний алгоритм, который определяет, идет ли речь о доказательстве:

Код последовательности → Последовательность высказываний → Это доказательство?

НАЙТИ ИЛИ ПРОВЕРИТЬ

Теория доказательства ставит две проблемы, которые хоть и схожи, но не должны смешиваться. Первая заключается в том, чтобы при данном высказывании Р найти его доказательство (или доказать, что его не существует). Вторая — в том, чтобы определить, верно ли предложенное доказательство. Вторая проблема может быть сложной, но первая намного сложнее. Если методы доказательства подходящие, то вторая проблема может быть решена алгоритмически. Проблема нахождения доказательства, наоборот, неразрешима таким образом.

Британский математик Эндрю Уайлс.

Последняя теорема Ферма

В качестве примера можно рассмотреть последнюю теорему Ферма.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»

Не важно, что вы пишете – роман, сценарий к фильму или сериалу, пьесу, подкаст или комикс, – принципы построения истории едины для всего. И ВСЕГО ИХ 27!Эта книга научит вас создавать историю, у которой есть начало, середина и конец. Которая захватывает и создает напряжение, которая заставляет читателя гадать, что же будет дальше.Вы не найдете здесь никакой теории литературы, академических сложных понятий или профессионального жаргона. Все двадцать семь принципов изложены на простом человеческом языке. Если вы хотите поэтапно, шаг за шагом, узнать, как наилучшим образом рассказать связную. достоверную историю, вы найдете здесь то. что вам нужно. Если вы не приемлете каких-либо рамок и склонны к более свободному полету фантазии, вы можете изучать каждый принцип отдельно и использовать только те. которые покажутся вам наиболее полезными. Главным здесь являетесь только вы сами.В формате PDF A4 сохранен издательский макет книги.

Дэниел Джошуа Рубин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная прикладная литература / Дом и досуг