Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Коэн внес значительный вклад в различные области математики, такие как теория чисел, математический анализ и логика. В1966 году на Международном математическом конгрессе в Москве он получил Филдсовскую премию — самую престижную математическую награду — за работу над континуум-гипотезой. Пол Коэн скончался в Калифорнии в марте 2007 года.

Кантор безуспешно пытался доказать ее в течение многих лет. К 1900 году решения все еще не было, и Гильберт поставил эту гипотезу на первое место в списке проблем в своем знаменитом докладе на конгрессе в Париже.

Решение проблемы в том виде, в каком мы знаем его сейчас, было получено в два этапа. Первый был завершен Гёделем в конце 1930-х годов. В 1938 и 1940 годах Гёдель опубликовал две статьи, где вкратце изложил различные аспекты первой части решения, которое детально изложено в курсе, прочитанном в Институте перспективных исследований. Конспекты курса были изданы в форме книги в 1940 году.

Вторую часть решения получил в 1963 году Пол Коэн — американский математик, который также работал в Институте перспективных исследований. Говорят, Коэн первым показал свое решение Гёделю, но когда он пришел к знаменитому коллеге, тот как раз переживал пик маниакально-депрессивного кризиса и не захотел впускать гостя, поэтому ему пришлось просовывать бумаги под дверь. Через несколько дней Гёдель позвонил коллеге и пригласил выпить чаю, из чего Коэн сделал вывод, что его решение верно. И действительно, за эту работу ученый в итоге получил Филдсовскую премию — для математиков она эквивалентна Нобелевской.

РЕШЕНИЕ ГЁДЕЛЯ И КОЭНА

Верна ли континуум-гипотеза? Это до сих пор неизвестно, поскольку ответ, найденный Гёделем и Коэном, состоит в том, что ни подтвердить континуум-гипотезу, ни опровергнуть ее невозможно на основе аксиом теории множеств. Если обозначить СН высказывание, в котором говорится, что "не существует множества с кардинальным числом, промежуточным между N и R", то СН для теории множеств — это идеальный пример первой теоремы Гёделя о неполноте: ни оно, ни его отрицание недоказуемы.

Как Гёдель и Коэн доказали это? Обозначим • абстрактную числовую операцию и предположим, что она удовлетворяет двум аксиомам:

— аксиома 1: операция коммутативна, то есть a • b = b • а;

— аксиома 2: у операции есть нейтральный элемент, то есть такой, что при операции с ним не происходит никаких изменений (если этот нейтральный элемент назвать е, то а • е = а).

Моделью назовем любой конкретный пример, любую специфическую операцию, выполняющую эти аксиомы. Например, сумма целых чисел — это модель, поскольку сумма коммутативна и имеет нейтральный элемент (то есть 0). Произведение целых чисел — также модель, поскольку эта операция также коммутативна и имеет нейтральный элемент (то есть 1). Вычитание целых чисел, наоборот, не является моделью, поскольку оно некоммутативно (например, 2 - 3 — не то же самое, что 3-2).

На основе этих аксиом можно синтаксически (согласно терминологии из предыдущей главы) доказать, что не может быть двух различных нейтральных элементов. То есть если е и е' — элементы, удовлетворяющие аксиоме 2, то обязательно е = е'. Доказательство состоит в следующем: предположим, что для e и e' верна аксиома 2. Тогда, так как е — нейтральный элемент, е • е' = е' (при операциях с е не происходит никаких изменений). Но е также нейтральный элемент, тогда e' • е = е (при операциях с е' не происходит никаких изменений). Получается, что:

е = е' • е = е • e' = е', следовательно, е = е'.

Любое утверждение, выводимое из аксиом, обязательно будет справедливо во всех моделях, потому что это же самое доказательство воспроизводимо на каждом конкретном примере. Следовательно, в любом примере, выполняющем аксиомы 1 и 2, окажется, что нейтральный элемент операции является единственным. Это происходит, конечно же, в случае суммы (где нет другого нейтрального элемента, кроме 0) и произведения (где единственный нейтральный элемент — 1).

Теперь назовем поглощающим такое число ƒ, что при операциях с ним результат вновь дает ƒ(то есть а • ƒ = ƒ), и рассмотрим утверждение Р "у операции есть поглощающий элемент". Вопрос: можно ли вывести Р из аксиом 1 и 2? Можно ли вывести отрицание Р? Из того факта, что операция коммутативна и имеет нейтральный элемент, можем ли мы вывести, обладает она поглощающим элементом или нет?

Сверху — аксиомы коммутативной операции с нейтральным элементом. Слева внизу — пример, выполняющий эти аксиомы, но не имеющий поглощающего элемента. Справа внизу — пример, в котором имеется поглощающий элемент. Следовательно, существование или отсутствие поглощающего элемента не может быть выведено из аксиом из верхней части схемы.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»

Не важно, что вы пишете – роман, сценарий к фильму или сериалу, пьесу, подкаст или комикс, – принципы построения истории едины для всего. И ВСЕГО ИХ 27!Эта книга научит вас создавать историю, у которой есть начало, середина и конец. Которая захватывает и создает напряжение, которая заставляет читателя гадать, что же будет дальше.Вы не найдете здесь никакой теории литературы, академических сложных понятий или профессионального жаргона. Все двадцать семь принципов изложены на простом человеческом языке. Если вы хотите поэтапно, шаг за шагом, узнать, как наилучшим образом рассказать связную. достоверную историю, вы найдете здесь то. что вам нужно. Если вы не приемлете каких-либо рамок и склонны к более свободному полету фантазии, вы можете изучать каждый принцип отдельно и использовать только те. которые покажутся вам наиболее полезными. Главным здесь являетесь только вы сами.В формате PDF A4 сохранен издательский макет книги.

Дэниел Джошуа Рубин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная прикладная литература / Дом и досуг