Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Функция на рисунке 1 — это результат сложения бесконечного количества волн, изменяющих различными способами основную волну на рисунке 2. Например, мы можем сжать или растянуть ее вертикально или горизонтально. На рисунках 3 и 4 показано, соответственно, вертикальное растяжение волны с рисунка 2 и ее сжатие.

РИС.З

РИС. 4

На рисунке 5 показано горизонтальное сжатие волны с рисунка 2. Волны также могут перемещаться по вертикали или горизонтали: на рисунке 6 показана волна с рисунка 2, смещенная горизонтально.

РИС. 5

РИС. 6

Единица — особый случай, который по техническим причинам рассматривается отдельно: это число не является ни простым, ни произведением простых, хотя причины этого отделения неважны для нашего обсуждения. Например: 12 = 2 х 2 x 3; 9 = 3 x 3; 15 = 3 x 5. Есть ли другой способ записать число 12 как произведение простых чисел? Или вариант 2 х 2 х 3 единственно возможный? Ответ заключается в том, что, не учитывая таких тривиальных вариаций, как изменение порядка чисел или группировки 2 х 2 в виде 2², единственная форма записи 12 в виде произведения простых чисел — это 2 х х 2 х 3, и это верно для всех остальных натуральных чисел.

Разложение на простые числа всегда единственное, и эта единственность создает более сильную связь между числами и их простыми множителями. Благодаря этому свойства разложения (или факторизации) на простые числа становятся сильнее.

Эдуард Гейне задался вопросом, существует ли подобная связь между периодической функцией и элементарными волнами. Единственное ли это разложение, как это установлено для разложения на простые числа? В 1860-х годах Гейне удалось доказать, что некоторые типы периодических функций (например, не имеющие скачков, то есть непрерывные) можно разложить на элементарные волны единственным образом. Однако он не нашел общего доказательства для всех возможных ситуаций, а также не смог доказать единственности в случае, когда в каждом периоде у функции бесконечное (теоретически) число разрывов. Так что когда Кантор приехал в Галле в 1870 году, Гейне предложил ему поработать над этим вопросом: всегда ли периодическую функцию можно разложить единственным образом, даже если количество разрывов в каждом периоде может неограниченно расти?

Кантор принялся изучать проблему и в 1871 году получил первый результат: разложение периодической функции является единственным, даже когда количество разрывов неограниченно растет, если только эти скачки распределяются определенным образом. То есть для гарантии единственности точки появления скачков должны удовлетворять некоторым специфическим условиям. Но ученый столкнулся со сложностями при выражении этих требований точно и элегантно. Он явно имел интуитивную догадку о том, какие особенности хотел выразить, но у него не получалось ясно сформулировать это.

В 1872 и 1873 годах Кантор постепенно понял, что для четкой формулировки условий следует рассматривать точки разрывов как множества, бесконечные в действительности. Более того, требовалось сравнить между собой различные бесконечные множества, подобно тому как 250 лет назад Галилей сравнил натуральные числа с квадратными (это, в свою очередь, привело к отбрасыванию аристотелевского принципа о том, что целое больше его частей). Кантор также открыл, что такое сравнение приводит к выводу о существовании бесконечных множеств, больших, чем другие бесконечные множества.

Эти идеи были настолько революционными и так противоречили тысячелетиям исследований, что Кантору понадобилось целых десять лет на то, чтобы полностью принять их и признать: в математику необходимо ввести актуальную бесконечность. В конце концов в 1883 году он написал длинную статью под названием «Основы общего учения о многообразиях. Математически-философский опыт учения о бесконечном», в которой не только выступал за введение актуальной бесконечности, но и утверждал, что это абсолютно неизбежно. Кантор начал свою статью, почти прося прощения за это решение:

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»

Не важно, что вы пишете – роман, сценарий к фильму или сериалу, пьесу, подкаст или комикс, – принципы построения истории едины для всего. И ВСЕГО ИХ 27!Эта книга научит вас создавать историю, у которой есть начало, середина и конец. Которая захватывает и создает напряжение, которая заставляет читателя гадать, что же будет дальше.Вы не найдете здесь никакой теории литературы, академических сложных понятий или профессионального жаргона. Все двадцать семь принципов изложены на простом человеческом языке. Если вы хотите поэтапно, шаг за шагом, узнать, как наилучшим образом рассказать связную. достоверную историю, вы найдете здесь то. что вам нужно. Если вы не приемлете каких-либо рамок и склонны к более свободному полету фантазии, вы можете изучать каждый принцип отдельно и использовать только те. которые покажутся вам наиболее полезными. Главным здесь являетесь только вы сами.В формате PDF A4 сохранен издательский макет книги.

Дэниел Джошуа Рубин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная прикладная литература / Дом и досуг