Читаем Учебное пособие по курсу «Нейроинформатика» полностью

Layer Lay1(aSum : Block; N,M : Long; Char : Real)

 Contents Sigm: NSigm(aSum,N,Char)[M] {В состав слоя входит M нейронов}

 InSignals M * NumberOf(InSignals, Sigm)

 {Число входных сигналов определяется как взятое M раз число входных сигналов нейронов. Вместо имени нейрона используем псевдоним}

 OutSignals M {Один выходной сигнал на нейрон}

 Parameters M * NumberOf(Parameters, Sigm)

 {Число параметров определяется как взятое M раз число параметров нейронов}

 Connections

  {Первые NumberOf(InSignals, NSigm(aSum,N,Char)) сигналов первому нейрону, и т.д.}

  InSignals[1..M *NumberOf(InSignals, Sigm)] <=> Sigm[1..M].InSignals[1..NumberOf(InSignals, Sigm)]

  {Выходные сигналы нейронов - выходные сигналы сети}

  OutSignals[1..M]<=> Sigm[1..M].OutSignals

  {Параметры слоя – параметры нейронов}

  Parameters[1..M *NumberOf(Parameters, Sigm)] <=> Sigm[1..M].Parameters[1..NumberOf(Parameters, Sigm)]

End {Конец описания слоя сигмоидных нейронов с произвольным сумматором}

{Слой точек ветвления}

Layer BLay(N,M : Long)

 Contents Branch(N)[M] {В состав слоя входит M точек ветвления}

 InSignals M {По одному входному сигналу на точку ветвления}

 OutSignals M * N {N выходных сигналов у каждой точки ветвления}

 Connections

  InSignals[1..M] <=> Branch[1..M].InSignals {По одному входу на точку ветвления}

  {Выходные сигналы в порядке первый с каждой точки ветвления, затем второй и т.д. }

  OutSignals[1..N * M]<=> Branch[+:1..M].OutSignals[1..N]

End {Конец описания слоя Точек ветвления}

{Полный слой сигмоидных нейронов с произвольными сумматорами на N входов}

Cascad FullLay(aSum : Block; N,M : Long; Char : Real)

 Contents Br: BLay1(M,N), Ne: Lay1(aSum,N,M,Char) {Слой точек ветвления и слой нейронов}

 InSignals N {Число входных сигналов – число точек ветвления}

 OutSignals M {Один выходной сигнал на нейрон}

 Parameters NumberOf(Parameters, Ne)

 {Число параметров определяется как взятое M раз число параметров нейронов}

 Connections

  {Входные сигналы – слою точек ветвления}

  InSignals[1..N]<=> Br.InSignals[1..N]

  {Выходные сигналы нейронов - выходные сигналы сети}

  OutSignals[1..M]<=> Ne.OutSignals[1..M]

  {Параметры слоя – параметры нейронов}

  Parameters[1..NumberOf(Parameters, Ne)] <=> Ne.Parameters[1..NumberOf(Parameters, Ne)]

  {Выход слоя точек ветвления – вход слоя нейронов}

  Br.OutSignals[1..N * M] <=> Ne.InSignals[1..N * M]

End {Конец описания слоя сигмоидных нейронов с произвольным сумматором}

{Сеть с сигмоидными нейронами и произвольными сумматорами, содержащая

 Input – число нейронов на входном слое;

 Output – число нейронов на выходном слое (число выходных сигналов);

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное