Читаем Учебное пособие по курсу «Нейроинформатика» полностью

  InSignals[1..M] <=> Net.InSignals[1..M] {Входные сигналы цикла – входы слоя}

  OutSignals[1..M] <=> Net.OutSignals[1.. M] {Выходы слоя – выходы цикла}

  {Параметры определяет слой}

  Parameters[1..NumberOf(Parameters,Net)] <=> Net.Parameters[1..NumberOf(Parameters,Net)]

  Net.OutSignals[1..M] <=> Net.InSignals[1..M] {Замыкаем выход на вход}

End {Конец описания слоя сигмоидных нейронов с произвольным сумматором}

{Полносвязная сеть с М сигмоидными нейронами на К тактов функционирования с выделенным входным слоем на N сигналов. Все входные сигналы подаются на вход каждого нейрона входного слоя. Все параметры ограничены по абсолютному значению единицей}

Cascad Net2: (aSum : Block; Char : Real; M, K, N : Long)

 Contents

  In: FullLay(aSum,N,M,Char), {Входной слой}

  Net: Circle(aSum,Char,M,K) {Полносвязная сеть}

 InSignals N {Число входных сигналов – N}

 OutSignals M {Один выходной сигнал на нейрон}

 {Число параметров определяется как сумма чисел параметров всех подсетей}

 Parameters NumberOf(Parameters, In)+NumberOf(Parameters, Net)

 ParamDef DefaultType -1 1

 Connections

  InSignals[1..N]<=> In.InSignals[1..N]  {Входные сигналы – входному слою}

  {Выходные сигналы нейронов - с выходного слоя сети}

  OutSignals[1..M]<=> Net.OutSignals[1.. M]

  {Параметры сети последовательно всем подсетям}

  Parameters[1..NumberOf(Parameters, In)] <=> In.Parameters[1..NumberOf(Parameters, In)]

  Parameters[NumberOf(Parameters,In)+1..NumberOf(Parameters,In)+NumberOf(Parameters, Net)] <=> Net.Parameters[1..NumberOf(Parameters, Net)]

  {Передача сигналов от слоя к слою}

  In.OutSignals[1..M] <=> Net.InSignals[1..M] {От входного к циклу}

  Net.OutSignals[1..M] <=> Net.InSignals[1..M] {От первого скрытого слоя}

End

{Нейрон сети Хопфилда из N нейронов}

Cascad Hopf(N : Long)

 Contents Sum(N),Sign_Easy {Сумматор и пороговый элемент}

 InSignals N {Число входных сигналов – N}

 OutSignals 1 {Число выходных сигналов – 1}

 Parameters NumberOf(Parameters,Sum(N)) {Число параметров – N}

 Connections

  InSignals[1..N] <=> Sum.InSignals[1..N] {Входы нейрона – входы сумматора}

  {Выходной сигнал нейрона – выходной сигнал порогового элемета}

  OutSignals <=> Sign_Easy.OutSignals

  {Параметры нейрона – парамеры сумматора}

  Parameters[1..NumberOf(Parameters, Sum(N))] <=> Sum.Parameters[1..NumberOf(Parameters, Sum(N))]

  {Выход сумматора на вход порогового элемента}

  Sum.OutSignals <=> Sign_Easy.InSignals

End

{Слой нейронов Хопфилда}

Layer HLay(N : Long)

 Contents Hop: Hopf(N)[N] {В состав слоя входит N нейронов}

 InSignals N * N {N нейронов по N входных сигналов}

 OutSignals N {Один выходной сигнал на нейрон}

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное