Читаем Учитель полностью

Разумеется, возникает вопрос и о природе математических объектов. В каком смысле существует, скажем, множество всех положительных целых чисел, или, гораздо каверзнее, множество всех множеств положительных целых чисел? Кантор занимал здесь радикальную позицию, называемую в сегодняшней философии математики математическим платонизмом[45]. Великий немецкий мыслитель считал, что те же трансфинитные числа не менее реальны, чем звёзды на небе. Предполагается, что имеется некий надсубъективный мир математических объектов, в котором и существуют всевозможные множества. Математические утверждения выражают факты устройства, обстояния вещей в этом мире. Соответственно, любое корректно сформулированное утверждение о математических объектах (скажем, «существует нечётное совершенное число») либо верно, либо нет в том же вечном, от наших соглашений и знаний независимом смысле. Таким образом, приобретают универсальный статус и законы аристотелевской логики, в особенности закон исключённого третьего, формулировкой которого и являлось предыдущее предложение. По известному афоризму, математик не изобретает, но открывает свои теоремы, примерно, как географ-мореплаватель открывает неизвестные острова в океане[46].

Кантор провозглашал нашу способность свободно оперировать с бесконечностью, ничем не ограниченную постигающую и созидающую мощь нашего духа. «Сущность математики — в её свободе», — таков был прекрасный, поэтический лозунг великого математического романтика.

Но у свободы есть, как мы хорошо знаем, цена, и романтика иногда далеко заводит. Надо сказать, что Кантор заплатил страшную цену за прорыв в Бесконечное. Душевное заболевание прогрессировало, всё больше мешало ему работать. Великий мыслитель умер в нервной клинике…

Уже самому Кантору были известны парадоксы теории множеств, попросту говоря, противоречия в ней, возникавшие на её окраинах и связанные именно с неограниченной свободой в образовании самых общих понятий. Положение это, по существу, было нетерпимым — ведь по тем же законам классической, аристотелевской логики, имея противоречие, можно доказать всё, что угодно. Вот пример парадокса, известного Кантору, и показывающего опасность чрезвычайно общих понятий. Кантором была доказана красивая теорема о том, что по всякому множеству можно найти множество большей мощности, содержащее «большее» число элементов[47]. Применение этого результата к множеству всех множеств приводит к немедленному, очевидному противоречию, напоминающему, кстати, парадоксальные ситуации в физике, когда речь идёт о «всей» Вселенной. Наиболее знаменитый из парадоксов был открыт в начале XX века английским философом и математиком Бертраном Расселом (Russel, Bertrand 1872–1970). Интересно, что и в случае парадокса Рассела источником беды являлась именно неограниченная свобода в образовании множеств, чрезвычайная общность этого понятия. Сам же парадокс, в сущности, воспроизводил в рамках теории множеств ситуации, известные с глубокой античности[48].

Теория Множеств Кантора, встретив поначалу серьёзные возражения, постепенно утвердилась в качестве главной методологии математики. Ряд поразительных открытий был сделан на этом пути. Достаточно упомянуть формулировку в 1904 г. немецким математиком Эрнстом Цермело (Zermelo, Ernst 1871–1953) аксиомы, носящей его имя (и называемой также Аксиомой Выбора). Этот принцип чрезвычайно общей природы давно употреблялся в математике, но его не выделяли и не замечали. Между тем, Аксиома Выбора позволила строго доказать совершенно поразительные утверждения. Пожалуй, самым эффектным из них является так называемый парадокс Банаха-Тарского (1920 г.): любой шар можно разбить на конечное число частей, из которых надлежащими перемещениями их в пространстве можно составить два точно таких же шара. Просто чудеса из Библии, но на сей раз в математике! Термин «парадокс» применяется к этой корректно доказанной теореме ввиду невероятности полученного результата. Воистину эти разбиения и «надлежащие» перемещения уже более принадлежат Б-жественной Сущности, чем нашей. Но также сильно чувствуется, что созданы мы по Образу и Подобию, коль скоро способны заметить усилием интеллектуального воображения тени этих «надлежащих» перемещений. Последовавшее изучение природы Аксиомы Выбора и некоторых других принципов теории множеств привело к открытиям, сравнимым по значению с открытием неевклидовой геометрии или теории относительности в физике.

Естественно, что укоренение теории множеств в качестве языка математики вызвало горячие дискуссии ведущих математиков конца 19-го начала 20-го века. Дискуссии эти продолжаются по сей день, что неудивительно, поскольку речь идёт о самом фундаменте математики.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии