Разумеется, возникает вопрос и о природе математических объектов. В каком смысле существует, скажем, множество всех положительных целых чисел, или, гораздо каверзнее, множество всех множеств положительных целых чисел? Кантор занимал здесь радикальную позицию, называемую в сегодняшней философии математики
Кантор провозглашал нашу способность свободно оперировать с бесконечностью, ничем не ограниченную постигающую и созидающую мощь нашего духа. «Сущность математики — в её свободе», — таков был прекрасный, поэтический лозунг великого математического романтика.
Но у свободы есть, как мы хорошо знаем, цена, и романтика иногда далеко заводит. Надо сказать, что Кантор заплатил страшную цену за прорыв в Бесконечное. Душевное заболевание прогрессировало, всё больше мешало ему работать. Великий мыслитель умер в нервной клинике…
Уже самому Кантору были известны парадоксы теории множеств, попросту говоря, противоречия в ней, возникавшие на её окраинах и связанные именно с неограниченной свободой в образовании самых общих понятий. Положение это, по существу, было нетерпимым — ведь по тем же законам классической, аристотелевской логики, имея противоречие, можно доказать всё, что угодно. Вот пример парадокса, известного Кантору, и показывающего опасность чрезвычайно общих понятий. Кантором была доказана красивая теорема о том, что по всякому множеству можно найти множество большей мощности, содержащее «большее» число элементов[47]. Применение этого результата к множеству всех множеств приводит к немедленному, очевидному противоречию, напоминающему, кстати, парадоксальные ситуации в физике, когда речь идёт о «всей» Вселенной. Наиболее знаменитый из парадоксов был открыт в начале XX века английским философом и математиком Бертраном Расселом (Russel, Bertrand 1872–1970). Интересно, что и в случае парадокса Рассела источником беды являлась именно неограниченная свобода в образовании множеств, чрезвычайная общность этого понятия. Сам же парадокс, в сущности, воспроизводил в рамках теории множеств ситуации, известные с глубокой античности[48].
Теория Множеств Кантора, встретив поначалу серьёзные возражения, постепенно утвердилась в качестве главной методологии математики. Ряд поразительных открытий был сделан на этом пути. Достаточно упомянуть формулировку в 1904 г. немецким математиком Эрнстом Цермело (Zermelo, Ernst 1871–1953) аксиомы, носящей его имя (и называемой также Аксиомой Выбора). Этот принцип чрезвычайно общей природы давно употреблялся в математике, но его не выделяли и не замечали. Между тем, Аксиома Выбора позволила строго доказать совершенно поразительные утверждения. Пожалуй, самым эффектным из них является так называемый парадокс Банаха-Тарского (1920 г.): любой шар можно разбить на конечное число частей, из которых надлежащими перемещениями их в пространстве можно составить два точно таких же шара. Просто чудеса из Библии, но на сей раз в математике! Термин «парадокс» применяется к этой корректно доказанной теореме ввиду невероятности полученного результата. Воистину эти разбиения и «надлежащие» перемещения уже более принадлежат Б-жественной Сущности, чем нашей. Но также сильно чувствуется, что созданы мы по Образу и Подобию, коль скоро способны заметить усилием интеллектуального воображения тени этих «надлежащих» перемещений. Последовавшее изучение природы Аксиомы Выбора и некоторых других принципов теории множеств привело к открытиям, сравнимым по значению с открытием неевклидовой геометрии или теории относительности в физике.
Естественно, что укоренение теории множеств в качестве языка математики вызвало горячие дискуссии ведущих математиков конца 19-го начала 20-го века. Дискуссии эти продолжаются по сей день, что неудивительно, поскольку речь идёт о самом фундаменте математики.