Читаем Удивительная логика полностью

61. Если 1 рабочий может построить дом за 12 дней, то 12 рабочих построят его за 1 день. Следовательно, 288 рабочих построят дом за 1 час, 17 280 рабочих построят его за 1 минуту, а 1 036 800 рабочих смогут построить дом за 1 секунду. Верно ли это рассуждение? Если нет, то в чем заключается ошибка?


62. Какое слово всегда пишется неправильно?


63. «Ручаюсь, – сказал продавец в зоомагазине, – что этот попугай будет повторять любое услышанное слово». Обрадованный покупатель приобрел чудо-птицу, но, придя домой, обнаружил, что попугай нем, как рыба. Тем не менее продавец не лгал. Как такое возможно?


64. В комнате есть свеча и керосиновая лампа. Что вы зажжете первым, когда вечером войдете в эту комнату?


65. Петр очень устал и лег спать в 7 часов вечера, поставив механический будильник на 9 часов утра. Сколько часов ему удастся поспать?


66. Отрицание истинного предложения является ложным предложением, а отрицание ложного – истинным. Однако следующий пример говорит, что это как будто не всегда так. Предложение Это предложение содержит шесть слов является ложным, поскольку в нем не шесть, а пять слов. Но отрицание Это предложение не содержит шесть слов, также является ложным, так как в нем как раз шесть слов. Как разрешить это недоразумение?


67. Сколько существует восьмизначных чисел, сумма цифр которых равна двум?


68. Периметр фигуры, составленной из квадратов, равен шести (рис. 49). Чему равна ее площадь?

69. Чему равна разность куба суммы квадратов чисел 2 и 3 и квадрата суммы их кубов?


70. Половина от половины числа равна половине. Какое это число?


71. Со временем человек обязательно побывает на Марсе. Саша Иванов – это человек. Следовательно, Саша Иванов со временем обязательно побывает на Марсе. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?


72. Для получения оранжевой краски надо смешать 6 частей желтой краски с 2 частями красной. Есть 3 грамма желтой краски и 3 грамма красной. Сколько граммов оранжевой краски можно получить в этом случае?


73. Из 12 спичек составлено 4 квадрата (рис. 50). Каким образом надо убрать 2 спички, чтобы осталось 2 квадрата?

74. Какой знак надо поставить между числами 5 и 6, чтобы получившееся число было больше 5, но меньше 6?

55? 66


75. В футбольной команде 11 игроков. Их средний возраст равен 22 годам. Во время матча один из игроков выбыл. При этом средний возраст команды стал равен 21 году. Сколько лет выбывшему игроку?


76.

– Сколько лет твоему отцу? – спрашивают мальчика.

– Столько же, сколько и мне, – невозмутимо отвечает он.

– Как такое возможно?

– Очень просто: мой отец стал моим отцом только тогда, когда я родился, ведь до моего рождения он не был моим отцом, значит, моему отцу столько же лет, сколько и мне.

Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?


77. В мешке 24 килограмма гвоздей. Каким образом можно на чашечных весах без гирь отмерить 9 килограммов гвоздей?


78. Петр лгал с понедельника по среду и говорил правду в другие дни, а Иван лгал с четверга по субботу и говорил правду в другие дни. Однажды они одинаково сказали: «Вчера был один из дней, когда я лгу». Какой день был вчера?


79. Трехзначное число записали цифрами, а потом – словами. Получилось, что все цифры в этом числе разные и возрастают слева направо, а все слова начинаются с одной и той же буквы. Какое это число?


80. В равенстве, составленном из спичек:

Х I I I = V I I–V I,

допущена ошибка. Каким образом надо переложить одну спичку, чтобы равенство стало верным?


81. Во сколько раз увеличится трехзначное число, если к нему приписать такое же число?


82. Если бы не было времени, то не было бы ни одного дня. Если бы не было ни одного дня, то всегда стояла бы ночь. Но если бы всегда стояла ночь, то было бы время. Следовательно, если бы не было времени, оно было бы. В чем заключается причина данного недоразумения?


83. В каждой из двух корзин по 12 яблок. Настя взяла несколько яблок из первой корзины, а Маша взяла из второй столько, сколько осталось в первой. Сколько яблок осталось в двух корзинах вместе?


84. У одного фермера 8 свиней: 3 розовые, 4 бурые и 1 черная. Сколько свиней могут сказать, что в этом небольшом стаде найдется, по крайней мере, еще одна свинья такой же масти, как и ее собственная?


85. Единственный сын отца сапожника – плотник. Кем приходится сапожник плотнику?


86. Если 1 рабочий может построить дом за 5 дней, значит, 5 рабочих построят его за 1 день. Следовательно, если 1 корабль пересекает Атлантический океан за 5 дней, то 5 кораблей пересекут его за 1 день. Верно ли это утверждение? Если нет, то в чем заключается допущенная в нем ошибка?


87. Возвращаясь из школы, Петя и Саша зашли в магазин, где они увидели большие весы.

– Давай взвесим наши портфели, – предложил Петя.

Весы показали, что Петин портфель весит 2 килограмма, а вес Сашиного портфеля оказался равным 3 килограммам. Когда мальчики взвесили два портфеля вместе, весы показали 6 килограммов.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже