Читаем Удовольствие от X. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире полностью

Тем не менее очевидно, что Гранди предпочитал третье значение суммы, отличное от 0 или 1. Догадаетесь ли вы, какое именно? Подумайте, что можно сказать, если вы с ученым видом валяете дурака.

Правильно. Гранди считал, что истинная сумма равна . И великие математики, в том числе Лейбниц и Эйлер, были с ним согласны. Несколько линий рассуждения подтверждали этот компромисс. Например, 1–1 + 1–1 +… можно выразить с помощью собственных членов следующим образом. Давайте использовать букву S для обозначения суммы. Тогда по определению

S = 1–1 + 1–1 +…

Теперь оставим первую 1 в правой части уравнения в покое и займемся остальными его членами. Они создают собственную копию S, и члены, стоящие справа от первой 1, вычитаются из нее:

S = 1–1 + 1–1 +… = 1 — (1–1 + 1 —…) = 1 — S.

Так что S = 1 — S и, следовательно, S = .

Дебаты по поводу суммы 1–1 + 1–1 +… бушевали почти 150 лет, пока новое поколение аналитиков не водрузило все виды исчисления и его бесконечные процессы (пределы, производные, интегралы, бесконечные ряды) на прочный фундамент раз и навсегда. Они воссоздали предмет с нуля, выстроив строгую логическую структуру, как в Евклидовой геометрии.

Два основных понятия числового ряда — частичные суммы и сходимость. Частичная сумма представляет собой нарастающую сумму. Вы просто суммируете конечное число членов, а затем останавливаетесь. Например, если сложить первые три члена ряда 1–1 + 1–1 +… получим 1–1 + 1 = 1. Давайте назовем это S3. Буква S обозначает «сумму», а индекс 3 показывает, что мы сложили только первые три члена. Вот несколько первых частичных сумм для этого ряда

S1 = 1

S2 = 1–1 = 0

S3 = 1–1 + 1 = 1

S4 = 1–1 + 1–1 = 0.

Таким образом, мы видим, что частичные суммы скачут между 0 и 1, и при этом не наблюдается никакой тенденции остановиться на 0, 1, или где-нибудь еще. По этой причине современные математики сказали бы, что сумма 1–1 + 1–1 +… не сходится.

Другими словами, частичные суммы не стремятся ни к какому предельному значению по мере увеличения числа членов, включенных в них. Поэтому сумма этого бесконечного ряда не имеет смысла.

Итак, мы придерживаемся прямой и узконаправленной линии поведения: не тратим впустую время и ограничиваемся анализом только тех рядов, которые сходятся. Значит ли это, что мы избежим встреченных ранее противоречий?

Пока нет. Кошмар продолжается. И это хорошо, что он существует, потому что напуганные им аналитики XIX века открыли более глубокие тайны в самом сердце исчисления, а затем вытащили их на свет. Извлеченные из этого уроки оказались бесценными не только для математики, но и для ее приложений во всех областях — от музыки до медицинской визуализации.

Рассмотрим ряд, известный в гармоническом анализе как знакочередующийся гармонический ряд:

1 — + + +…

Вместо одного шага вперед и одного назад здесь шаги становятся все короче и короче. Один шаг вперед, но только полшага назад, затем треть шага вперед и четверть шага назад и так далее. Обратите внимание на следующую закономерность: дроби с нечетным знаменателем имеют положительные знаки, а с четным — отрицательные. Частичные суммы в данном случае равны:

S1 = 1

S2 = 1 — = 0,500

S3 = 1 — + = 0,833…

S4 = 1 — + = 0,583…

И если вы рассмотрите достаточно много таких сумм, то обнаружите, что они нацеливаются на число, близкое к 0,69. Действительно, можно доказать, что этот ряд сходится. Его предельное значение равно натуральному логарифму от 2 (обозначается ln2), приблизительно составляющему 0,693147.

Так что же здесь кошмарного? На первый взгляд, ничего. Знакочередующийся гармонический ряд походит на паиньку: сходящийся, с хорошим поведением. Ваши родители похвалили бы его.

Именно это и делает его опасным. Это хамелеон, мошенник, скользкий тип, который может быть кем угодно. Если переставлять его члены в произвольном порядке, вы можете подвести его сумму к любому значению. Буквально. Например, 297, 126 или –42π, или 0, или любому другому.

Это выглядит так, будто ряд полон презрения к коммутативному закону сложения. Просто просуммировав его члены в иной последовательности, вы можете изменить ответ, чего никогда не произошло бы с конечной суммой. Поэтому, даже если исходный ряд сходится, в нем по-прежнему будут странности, которые невозможно представить в обычной арифметике.

Вместо того чтобы доказать этот удивительный факт (результат, известный как теорема Римана о перестановке слагаемых в условно-сходящихся рядах)[174], рассмотрим очень простую перестановку, сумму которой легко посчитать. Сгруппируем члены этого ряда таким образом, чтобы к каждому положительному слагаемому прибавлялось два отрицательных.



Далее упростим каждое выражение в скобках, вычитая второй член из первого и оставляя без изменения третий член. Тогда ряд сводится к сумме:



После вынесения за скобки из всех дробей выражения как общего множителя ряд примет вид:



Перейти на страницу:

Похожие книги

Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется

Если бы можно было рассмотреть окружающий мир при огромном увеличении, то мы бы увидели, что он состоит из множества молекул, которые постоянно чем-то заняты. А еще узнали бы, как действует на наш организм выпитая утром чашечка кофе («привет, кофеин»), более тщательно бы выбирали зубную пасту («так все-таки с фтором или без?») и наконец-то поняли, почему шоколадный фондан получается таким вкусным («так вот в чем секрет!»). Химия присутствует повсюду, она часть повседневной жизни каждого, так почему бы не познакомиться с этой наукой чуточку ближе? Автор книги, по совместительству ученый-химик и автор уникального YouTube-канала The Secret Life of Scientists, предлагает вам взглянуть на обычные и привычные вещи с научной точки зрения и даже попробовать себя в роли экспериментатора!В формате PDF A4 сохранен издательский макет.

Нгуэн-Ким Май Тхи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука