Читаем Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики полностью

Какую структуру имеют ваши большие данные?

Многие источники больших данных на самом деле являются полуструктурированными или мультиструктурированными, а не совсем неструктурированными. Такие данные подразумевают логическую схему, которая позволяет извлечь информацию для анализа. С ними просто сложнее работать, чем с традиционными источниками структурированных данных. Использование полуструктурированных данных требует дополнительного времени и усилий для того, чтобы определить наилучший способ их обработки.

Хотя на первый взгляд может показаться иначе, данные интернет-журнала подчинены определенной логике. В них присутствуют поля, разделители и значения, как и в структурированном источнике. При этом они не согласованы друг с другом и не представляют собой набор. Текст журнала, сгенерированный только что щелчком кнопкой мыши на сайте, может быть длиннее или короче, чем текст, сгенерированный щелчком кнопкой мыши на другой странице минуту назад. И все-таки необходимо понять, что полуструктурированные данные не лишены логики. Вполне возможно найти взаимосвязь между различными их фрагментами – просто это потребует больше усилий, чем в случае со структурированными данными.

Профессиональных аналитиков больше тревожат неструктурированные данные, чем полуструктурированные. Возможно, им придется побороться с полуструктурированными данными, чтобы подчинить их своей воле, но они это сделают. Они смогут привести полуструктурированные данные в хорошо структурированную форму и включить в свои аналитические процессы. По-настоящему неструктурированные данные приручить гораздо сложнее, и это будет оставаться головной болью для организаций по мере того, как они будут учиться справляться с полуструктурированными данными.

<p>Исследование больших данных</p>

Начать работу с большими данными несложно. Просто соберите их и поручите команде аналитиков вашей организации разобраться в том, чем они могут быть вам полезны. Для начала не понадобится обеспечивать постоянный поток данных. Все, что вам нужно, – это позволить аналитической команде применить свои инструменты и подходы к некоторому набору данных, чтобы они могли начать процесс исследования. Это именно то, чем занимаются аналитики и ученые в области науки о данных.

Существует старое правило: 70–80 % времени уходит на сбор и подготовку данных и только 20–30 % – на их анализ. В начале работы с большими данными можно ожидать более низких значений. Вероятно, в самом начале аналитики будут тратить 95 %, если не все 100 %, времени только на то, чтобы разобраться в источнике данных, прежде чем они смогут решить, как его следует анализировать.

Важно понимать, что это нормально. Выяснение того, что собой представляет источник данных, – важная часть процесса анализа. Это, может быть, и скучновато, однако итеративная загрузка данных[4], изучение того, как они выглядят, а также настройка процесса загрузки с целью более точного извлечения нужных данных критически важны. Без выполнения этих действий невозможно перейти к самому процессу анализа.

Приносите пользу по ходу дела

Чтобы решить, как использовать источник больших данных на благо своего бизнеса, придется потратить немало усилий. Аналитики и их работодатели должны подумать, как обеспечить небольшие быстрые достижения. Это продемонстрирует организации прогресс и обеспечит поддержку дальнейших действий. Такие достижения могут генерировать солидную отдачу от инвестиций.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука