Глава 2. Веб-данные: первые большие данные. Вероятно, наиболее широко используемый и самый известный источник больших данных на сегодняшний день – это данные, собранные с помощью сайтов. Журналы, которые содержат историю посещения пользователями веб-страниц, – настоящая сокровищница информации, которая только и ждет, чтобы ее проанализировали. Организации в целом ряде отраслей уже интегрировали подробные данные о клиентах, полученные с помощью сайтов, в собственную аналитическую среду. В этой главе показано, как эти данные расширяют возможности и изменяют процесс принятия различных бизнес-решений.
Глава 3. Источники больших данных и их ценность. Здесь мы подробно рассмотрим еще девять источников больших данных, чтобы объяснить, что представляет собой каждый источник данных, а также перечислим некоторые способы их применения в бизнесе. Одни и те же базовые технологии могут привести к возникновению нескольких источников больших данных в различных отраслях, а различные отрасли могут воспользоваться преимуществами одних и тех же источников данных. Большие данные имеют очень широкую сферу применения.
Часть II посвящена технологиям, процессам и методам, необходимым для укрощения больших данных. За последние годы увеличились возможности масштабируемости этих трех факторов. Организации не могут далее полагаться на устаревшие подходы и желают оставаться конкурентоспособными в мире больших данных. Эта часть книги наиболее «техническая», но все же она доступна для понимания. Читатели познакомятся с рядом концепций, с которыми им предстоит столкнуться в мире анализа больших данных.
Глава 4. Эволюция масштабируемости аналитических систем. Темп роста объема данных всегда предъявлял высокие требования к наиболее масштабируемым из доступных методов анализа. Перед появлением больших данных они уже были близки к своим пределам. Теперь традиционные подходы просто не работают. В этой главе рассматриваются слияние аналитической среды со средой данных, массивно-параллельные архитектуры, облачные и грид-вычисления, а также модель MapReduce. Каждая из этих парадигм обеспечивает большую масштабируемость и будет играть важную роль в процессе анализа больших объемов данных.
Глава 5. Эволюция аналитических процессов. Значительное увеличение уровня масштабируемости требует обновления аналитических процессов. Глава начинается с описания использования так называемых аналитических песочниц для обеспечения профессиональных аналитиков масштабируемой средой в целях создания передовых аналитических процессов. Далее объясняется, как наборы данных предприятия могут обеспечить б
Глава 6. Эволюция аналитических инструментов и методов. В этой главе рассматриваются пути развития передовых аналитических инструментов, а также объясняется, как подобные прорывы повлияют на работу профессиональных аналитиков с большими объемами данных. Затрагиваются такие темы, как эволюция визуальных интерфейсов, аналитические точечные решения, инструменты с открытым исходным кодом и инструменты визуализации данных. Рассказывается, как профессиональные аналитики изменили свои подходы к построению моделей для более эффективного использования имеющихся возможностей. Среди описываемых тем: групповое моделирование, экспресс-моделирование и анализ текста.
Третья часть посвящена людям, которые занимаются анализом, их командам и подходам, используемым для обеспечения высокого качества работы. Наиболее важный фактор при проведении любого анализа, в том числе анализа больших данных, – наличие подходящих людей, которые руководствуются правильными принципами анализа. Ознакомившись с третьей частью, читатели будут лучше понимать, чем хороший анализ, хороший профессиональный аналитик и хорошая команда аналитиков отличаются от остальных.
Глава 7. Что такое хороший анализ? Подсчет статистики, составление отчета и применение алгоритма моделирования – лишь некоторые из необходимых шагов для обеспечения хорошего анализа. В начале данной главы поясняются отдельные определения, а затем речь идет об обеспечении качественного анализа. Большие данные – довольно сложная тема, поэтому особенно важно понять принципы, излагаемые в этой главе.