У бактерий и архей (а еще у растений) цитоплазма окружена дополнительным защитным слоем, который называется клеточной стенкой
. В отличие от мембраны, которая играет роль фильтра, стенка обеспечивает свободное прохождение гораздо большего числа химических соединений, за исключением самых крупных, многие из которых являются токсинами. Ее жесткая форма не дает клетке схлопнуться, когда из нее уходит жидкость, или взорваться, когда жидкость в клетку поступает.Другая важная функция полупроницаемой природы клеточной мембраны – способность поддерживать баланс заряда между внутренностью клетки и окружающей ее средой. Напомню, что со времени возникновения жизни в океанах клетки были созданы таким образом, что их внутренний отрицательный заряд всегда ниже кислой положительно заряженной окружающей среды. Этот химический баланс внешнего и внутреннего является ключевым условием для поддержания внутренней работы метаболизма.
Тайлер Волк называет клетки самогенерируемыми динамическими организмами
, которые в любой момент времени находятся на грани между существованием и умиранием. Они смогли выжить, потому что использовали свой метаболизм, и остались в лидерах. Когда отходы выводятся из клетки, она теряет молекулы. Для компенсации этой потери клетки также используют метаболизм и выращивают новые молекулы. Если обмен хотя бы равный, клетка продолжает жить в своей исходной форме; если же образуется больше молекул, чем теряется, защита от умирания возрастает, и клетка становится больше, но расти она может лишь до определенного размера. Дело в том, что крупной клетке требуется больше питательных веществ, кроме того, она сталкивается с основным законом физики: если сфера становится больше, ее внутреннее пространство увеличивается в большей степени, чем поверхность, поэтому поверхности клетки сложнее поддерживать постоянный приток питательных веществ в необходимом объеме при условии непрерывного увеличения внутреннего пространства. И что же клетке делать? Она делится пополам и начинает процесс заново, пока не достигнет своего оптимального размера. Таким образом достигается баланс между ростом и выживанием.Конечно, бактерии и археи размножаются простым клеточным делением. Это бесполое размножение, поскольку в нем принимает участие только один организм, в данном случае – одна клетка (в главе 18 мы рассмотрим разницу между бесполым и половым размножением). Когда клетка достигает определенной точки своей жизни, ее гены удваиваются (воспроизводятся). Два получившихся в результате полных генома разделяются, и каждый занимает половину клетки. Затем клетка делится пополам – этот процесс называется «митоз
». Две дочерние клетки являются носителями одинакового набора генов. Можно сказать, что первая появившаяся на Земле бактериальная клетка бессмертна: она продолжает делиться в каждой существующей бактерии.Передача генов от родителей к отпрыскам называется их вертикальным переносом
. Но если обе дочерние клетки, образующиеся в результате деления митотической клетки, несут в себе одни и те же гены, значит ли это, что они проживают абсолютно идентичные жизни? На самом деле бактерии и археи обладают значительной генетической индивидуальностью, поскольку помимо вертикального переноса генов есть еще и горизонтальный, в результате которого разные организмы получают гены друг от друга (рисунок 13.2). Например, клетки произвольным образом выделяют гены во внешнюю среду, и другие клетки могут подобрать их. Так возникает генетическое разнообразие даже среди клеток, произошедших от одного родителя. Кроме того, клетки бактерий и архей, как и любые другие клетки, претерпевают полезные и вредные мутации, расширяя генетическое разнообразие. Когда клетка бактерии или археи делится, потомкам передаются все имеющиеся у нее гены (включая мутировавшие и те, что в результате вертикального переноса она унаследовала от материнской клетки), а также присоединенные извне.
Рисунок 13.2.
Горизонтальный перенос генов у бактерий