Читаем Управление электрохозяйством предприятий полностью

На рис. 7 показаны графики взаимосвязанных зависимостей всех величин, приведенных в табл. 5.

Из данных табл. 5 и графиков рис. 7 видно, что со снижением интенсивности отказов дополнительный экономический эффект монотонно возрастает и достигает максимума при λ2опт.

Таблица 5

Расчетные данные для построения взаимосвязанных графиков функций λ2λ2опт , ΔU, ΔUmax, ΔK и ΔKmax

На графике рис. 7 можно выделить два многоугольника, один из которых abcdefg характеризует фактические (текущие) значения экономического эффекта, дополнительных капитальных затрат и интенсивности отказов, а другой ABCDEFGH – соответствующие им максимальные и оптимальные значения.

Данные расчетов, приведенные в табл. 5, несколько условны, но становятся достаточно точными, если известны конкретные значения постоянных средних затрат С на повышение безотказности работы электродвигателей и стоимости А отказов. При других значениях этих постоянных, отличающихся от принятых в данном расчете, дополнительный и максимальный экономический эффекты и капитальные затраты, а также оптимальные значения интенсивности отказов электродвигателей несколько изменятся, но общий характер указанных выше соотношений останется прежним.

Расчеты показали, что если затраты на разработку и внедрение спецзащит по повышению уровня безотказности работы электродвигателей составляют малую долю (не выше 1-5 %) общих затрат на технологическое оборудование и если при этом не наблюдаются значительные потери производительности и брака продукции, то в принципе нецелесообразно ограничивать повышение уровня безотказности работы этих электродвигателей из-за чисто экономических соображений.

Рис. 7. Графики взаимосвязей интенсивностей отказов с экономическим эффектом и дополнительными капитальными затратами

Можно считать, что мероприятия по повышению уровня безотказности работы электродвигателей эффективны тогда, когда средние затраты на предупреждение одного отказа меньше среднего удельного ущерба, вызываемого одним отказом.

Наличие полученных математических моделей позволяет экономически обосновать оптимальный уровень безотказной работы приводных электродвигателей (в частности, АД) оборудования и дает возможность разработать необходимый комплекс организационно-технических мероприятий по предупреждению и устранению отказов.

ГЛАВА 13

УСТОЙЧИВОСТЬ РАБОТЫ ЭЛЕКТРОПРИЕМНИКОВ ПРИ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ

Вопросы устойчивости работы электроприемников тесно связаны с их эксплуатационной надежностью и во многом зависят от показателей качества электроэнергии (ГОСТ 13109-97).

На снижение устойчивости работы электроприемников могут повлиять: несинхронные включения в энергосистемах, различные аварийные ситуации (КЗ затяжного характера, выпадение одной из фаз питающей сети и др.), режимы работы и мощности КУ, взаимное влияние режимов работы самих электроприемников (в частности, АД) и т. д.

Оценим условия устойчивости работы наиболее массового вида электроприемников на предприятиях – приводных АД при наличии компенсации реактивной мощности с помощью КУ.

Устойчивость работы АД может нарушиться как в установившемся, так и в динамическом режимах его работы. Динамическая устойчивость АД характеризуется его способностью к восстановлению нормальной частоты вращения после соответствующих аварийных ситуаций в электроустановках.

Проверка устойчивости работы электроприемников, в частности, АД, при наличии КУ заключается в соблюдении следующего неравенства:

где Q – реактивная мощность, потребляемая асинхронным двигателем, квар.

Выполнение данного требования заключается в том, что любое случайное снижение напряжения вызывает избыток реактивной мощности, приводящий к возрастанию напряжения, пока его значение не установится.

Реактивная мощность, потребляемая АД, состоит из:

реактивной мощности намагничивания не зависящей от нагрузки, квар:

где Xμ – индуктивное сопротивление ветви намагничивания АД, Ом;

реактивной мощности рассеяния Qr зависящей от нагрузки, квар:

где X – реактивное сопротивление АД, Ом; s – скольжение АД; sKp – критическое скольжение АД.

Электромагнитный момент вращения АД М при изменении напряжения определяется по известной упрощенной формуле Клосса:

где MKp – максимальный (критический) вращающийся момент АД при номинальном напряжении Uном.

Из формулы (37) видно, что реактивная мощность прямо пропорциональна квадрату напряжения:

Если в формулу (38) подставить значения Sкр/S из формулы (39), то после несложных преобразований получим:

Из формулы (41) видно, что мощность рассеяния АД обратно пропорциональна квадрату напряжения:

Установившийся режим работы АД определяется условием равенства вращающего момента и момента сопротивления приводимого механизма, т. е. точкой пересечения двух моментных характеристик.

Перейти на страницу:

Похожие книги

Артиллерия русской армии (1900-1917 гг.). Том 3: Тактика и стрельба артиллерии
Артиллерия русской армии (1900-1917 гг.). Том 3: Тактика и стрельба артиллерии

Книга состоит из двух частей — четвертой и пятой. Часть четвертая посвящена вопросам тактики русской артиллерии. Разобрав сначала общие основы боевого применения артиллерии, которыми русское командование руководствовалось при подготовке этого рода войск к войне, автор переходит к характеристике каждого вида боя в отдельности, иллюстрируя их боевыми примерами участия артиллерии в войне. В заключение этой части автор дает выводы из опыта войны.В части пятой дается описание всех способов стрельбы, которые существовали в предвоенный период и которыми русская артиллерия пользовалась в процессе войны. Так же, как и предыдущая часть, часть пятая иллюстрируется боевыми примерами из опыта войны.Книга предназначается для генералов и офицеров Советской Армии.

Евгений Захарович Барсуков

Технические науки