Обычно дуальности обнаруживаются между струнами одинаковой размерности. Переставляя слагаемые, описывающие эти струны например, мы нередко можем заменить одну теорию струн на другую. Это создает целую паутину дуальностей между разными струнными теориями, которые определены в одинаковой размерности. Но дуальность между двумя объектами, определенными в разных размерностях, была событием неслыханным.
Это отнюдь не академический вопрос, потому что он имеет далеко идущие последствия в контексте представлений о ядерном взаимодействии. Скажем, ранее мы видели, что наилучшее описание ядерного взаимодействия дает нам калибровочная теория в четырех измерениях, представленная полем Янга – Миллса, но никому так и не удалось найти ни одного точного решения для поля Янга – Миллса. Но поскольку калибровочная теория в четырех измерениях может быть дуальна теории струн в десяти измерениях, это означает, что ключом к ядерному взаимодействию может быть теория квантовой гравитации. Это стало откровением, поскольку означало, что фундаментальные свойства ядерного взаимодействия (например, масса протона), возможно, лучше всего описываются теорией струн.
Это породило среди физиков своеобразный кризис идентичности. Те, кто работает исключительно в области ядерного взаимодействия, все свое время посвящают исследованию трехмерных объектов, таких как протоны и нейтроны, и нередко посмеиваются над физиками, которые занимаются теоретическими рассуждениями в более высоких размерностях. Но с учетом новой дуальности между теорией гравитации и калибровочной теорией они вдруг обнаружили, что пытаются разузнать все, что можно, о десятимерной теории струн, в которой, возможно, кроется ключ к пониманию ядерного взаимодействия в четырех измерениях.
Эта странная дуальность привела еще к одному неожиданному открытию, получившему название голографического принципа. Голограмма – это двумерный лист пластика, содержащий особым образом зашифрованное изображение трехмерных объектов. Если направить на такой плоский экран лазерный луч, то над ним возникает трехмерный образ. Иными словами, вся информация, необходимая для создания трехмерного образа, закодирована и нанесена на плоский двумерный экран при помощи лазеров. Примерно так R2-D2 из «Звездных войн» проецировал образ принцессы Леи, и так же создаются дома с привидениями в Диснейленде, где вокруг вас скользят трехмерные призраки.
Этот принцип справедлив и для черных дыр. Как мы видели ранее, если бросить в черную дыру энциклопедию, то, согласно квантовой механике, содержащаяся в книге информация не может исчезнуть. Так куда же она девается? Одна теория постулирует, что она распределяется по поверхности горизонта событий черной дыры. Так что двумерная поверхность черной дыры содержит полную информацию обо всех трехмерных объектах, которые попали внутрь.
Из этого тоже вытекают далеко идущие выводы для нашей концепции реальности. Мы уверены, что представляем собой трехмерные объекты, способные передвигаться в пространстве и описываемые тремя числами – длиной, шириной и высотой. Но это, возможно, иллюзия. Возможно, все мы живем в голограмме.
Может быть, тот трехмерный мир, который мы воспринимаем, – всего лишь тень реального мира, который на самом деле является десяти- или одиннадцатимерным. Перемещаясь в трех пространственных измерениях, мы воспринимаем таким образом движение нашего реального «я» в десяти или одиннадцати измерениях. Когда мы идем по улице, наша тень следует за нами и движется подобно нам, за исключением того, что она существует в двух измерениях. Аналогично и мы сами, возможно, представляем тени, движущиеся в трех измерениях, но наши настоящие «я» при этом двигаются в десяти или одиннадцати измерениях.
Короче говоря, мы видим, что со временем теория струн приносит новые, совершенно неожиданные результаты. Это означает, что мы до сих пор по-настоящему не понимаем фундаментальные принципы, которые за ней стоят. Вполне возможно, что надо говорить вовсе не о струнах, поскольку при формулировании теории в одиннадцати измерениях струны могут быть описаны как мембраны.
Вот почему пока рано тестировать теорию струн экспериментально. Когда нам удастся раскрыть истинные принципы, стоящие за ней, мы, возможно, найдем способ ее проверить. Тогда мы сможем сказать определенно раз и навсегда, что такое теория струн – теория всего или теория ничего.
Несмотря на теоретические успехи теории струн, в ней по-прежнему хватает слабых мест. Любая теория с такими грандиозными заявками, как у теории струн, естественным образом привлекает внимание целой армии критиков. Приходится постоянно напоминать себе слова Карла Сагана, который сказал, что «чрезвычайные заявления требуют чрезвычайных доказательств».