Читаем Уродливая Вселенная. Как поиски красоты заводят физиков в тупик полностью

В ответ на предложение Рихарда скорректировать научный метод космологи Джо Силк и Джордж Эллис в широко читаемом комментарии, опубликованном в журнале Nature, предостерегли об «отступлении от многовековых философских традиций определять научное знание как эмпирическое» и выразили опасение, что «теоретическая физика рискует превратиться в бесхозную землю на границе между математикой, физикой и философией, по-настоящему не удовлетворяя требованиям ни одной из них»48.

Я могу нагнать еще страху. Если мы примем новую философию, ратующую за выбор теорий на основании чего угодно, кроме фактов, то зачем ограничиваться физикой? Мне представляется будущее, в котором климатологи выбирают модели, руководствуясь критериями, выдуманными неким философом. От этой мысли я холодею.

Однако основная причина, по которой я принимаю участие в этой конференции, заключается в том, что я хочу получить ответы на вопросы, которые и привели меня в физику. Хочу узнать, как возникла Вселенная, состоит ли время из отдельных моментов и действительно ли все возможно объяснить с помощью математики. Я не рассчитываю на то, что философы ответят на эти вопросы. Но возможно, они правы – и причина, по которой мы не продвигаемся вперед, в том, что наша неэмпирическая оценка теорий ни к черту не годится.

Философы, бесспорно, правы: чтобы формулировать теории, мы используем критерии и помимо адекватности наблюдениям. Да, наука работает за счет генерирования и последующей проверки гипотез – но это лишь часть истории. Подвергать все гипотезы проверке попросту невозможно, и потому бо́льшая часть научной деятельности сегодня – от получения ученых степеней до рецензирования и рекомендаций по научному руководству – посвящена выявлению хороших гипотез, с которых можно было бы начать. Стандарты, принятые научным сообществом, в разных областях сильно различаются, и в каждой применяются свои собственные фильтры качества, но все мы какие-то да используем. Как минимум на практике оценка теории для предварительного отбора гипотез уже давно составляет часть научного метода. Это не освобождает нас от экспериментальной проверки, это производственная необходимость, чтобы вообще добраться до испытаний экспериментом.

Таким образом, в основаниях физики мы всегда выбирали теории по соображениям, не связанным с проверкой в опыте. Нам приходится так поступать, ведь часто наша цель – не объяснить существующие данные, а разработать теории, которые, мы надеемся, будут проверены позднее, если мы сумеем убедить кого-то это сделать. Но как же мы должны решать, над какой теорией работать, до ее экспериментальной проверки? И как экспериментаторам определять, какую теорию стоит проверять? Разумеется, мы прибегаем к неэмпирической оценке. Просто, в отличие от Рихарда, я не думаю, что критерии, используемые нами, очень уж философские. Они скорее преимущественно социальные и эстетические. И я сомневаюсь, что они саморегулирующиеся.

Аргументы о красоте уже подводили нас в прошлом, и я боюсь, что наблюдаю очередной провал прямо сейчас.

«Ну и что? – можете вы спросить. – Разве всегда все в итоге не налаживалось?» Налаживалось. Однако, не говоря уже о том, что мы были бы далеко впереди, не отвлекайся ученые на красоту, физика изменилась – и продолжает меняться. Раньше мы как-то выкарабкивались, потому что данные заставляли физиков-теоретиков пересматривать непродуманные эстетические идеалы. Однако в последнее время нам все чаще исходно нужны теории, чтобы выбрать, какие эксперименты с большей вероятностью выявят новый феномен, эксперименты, на проведение которых затем потребуются десятилетия и миллиарды долларов. Данные к нам больше не приходят сами – мы должны знать, где их добыть, и мы не можем позволить себе искать везде. Следовательно, чем сложнее становятся новые эксперименты, тем больше теоретики должны заботиться о том, чтобы не загнать себя в тупик в ослеплении прекрасной мечтой. Новые вызовы требуют новых методов. Но каких методов?

Надеюсь, у философов есть план.

* * *

Место проведения конференции – главное здание Мюнхенского университета Людвига – Максимилиана. Это здание было построено в 1840 году и затем перестроено из-за частичного разрушения во время Второй мировой войны. Полукруглые арки под потолком, мраморные полы, по обеим сторонам коридора высятся колонны, кое-где декорированные витражным стеклом и огнетушителем. В конференц-зале умершие взирают с картин, написанных маслом и оправленных в золотые рамы. Мероприятие начинается ровно в десять утра.

В конференции также принимает участие Гордон (Горди) Кейн, американский специалист по физике элементарных частиц. Горди – автор нескольких научно-популярных книг о физике частиц и суперсимметрии, еще известный своими попытками объединить теорию струн со Стандартной моделью. Он утверждает, будто может вывести из теории струн заключение, что суперсимметричные частицы должны появиться в Большом адронном коллайдере.

Перейти на страницу:

Все книги серии Сенсация в науке

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература