Читаем Уродливая Вселенная. Как поиски красоты заводят физиков в тупик полностью

Во время выступления Кейна среди физиков вспыхивает спор. Некоторые из них дискутируют с докладчиком, пока какой-то философ громко не жалуется, что хочет услышать конец выступления. «И это составляющая того, что мы зовем научным методом…» – ворчит Дэвид Гросс, давний сторонник теории струн (который «от всего сердца рекомендует»49 книгу Рихарда Давида), но затем садится обратно. Действительно ли предсказания Кейна следуют из теории струн, или он сделал дополнительные специальные допущения, чтобы воспроизвести то, что мы уже знаем о Стандартной модели? Сомнения остаются.

Горди, возможно, и переоценивает строгость своих выкладок, но выполняет трудную работу: он один из немногих, кто пытается отыскать тропинку от красивой идеи теории струн назад к запутанной реальности физики элементарных частиц. Тропинка Горди ведет через суперсимметрию, необходимый элемент теории струн. Хотя открытие суперпартнеров и не доказало бы истинность теории струн, оно стало бы первой вехой на пути объединения теории струн со Стандартной моделью.

В своей книге 2001 года Горди описал суперсимметрию как «удивительную, красивую и необыкновенную» и в то время казался уверенным, что Большой адронный коллайдер обнаружит частицы-суперпартнеры. Его уверенность основывалась на аргументе о естественности. Если предположить, что теория суперсимметрии содержит только «приличные» числа – не слишком большие, но и не слишком маленькие, – можно оценить массы суперпартнеров. «По счастью, ожидаемые массы достаточно малы, они намекают, что суперпартнеры скоро будут обнаружены», – писал Горди. И объяснил, что «массы суперпартнеров не могут значительно превышать массу Z-бозона, если весь этот подход правильный». Стало быть, если суперпартнеры существуют, Большой адронный коллайдер должен был давным-давно их засечь.

* * *

Оценка Горди основывается на одной из главных привлекательных особенностей суперсимметрии: она избавляет от необходимости выполнять тонкую настройку для массы бозона Хиггса, одной из двадцати пяти частиц Стандартной модели. Этот довод типичен, мы с такими еще не раз столкнемся, так что разберем его детально.

Бозон Хиггса – единственная известная частица своего типа, и он страдает от специфической математической проблемы, от которой другие элементарные частицы защищены: квантовые флуктуации вносят огромный вклад в его массу. Вклад квантовых флуктуаций обычно мал, но в случае бозона Хиггса он дает массу гораздо большую, чем наблюдаемая, – в 1014 раз больше. Не слегка неправильную, а недопустимо, катастрофически неверную[32].

То, что математика дает ошибочный результат для массы хиггсовского бозона, легко исправить. Можно внести поправку в теорию посредством вычитания нужного члена – так, чтобы оставшаяся разность давала наблюдаемую массу. Подобная поправка возможна, поскольку ни один из членов по отдельности не измерить, измерима лишь разница между ними. Однако, производя такое действие, нужно аккуратно подобрать вычитаемый член, чтобы почти, но не полностью аннулировать вклад квантовых флуктуаций.

Для такого деликатного устранения требуется число, идентичное тому, что обуславливают квантовые флуктуации, в четырнадцати разрядах, а затем отличающееся в пятнадцатом. Но то, что пара таких близких чисел могла возникнуть случайно, кажется крайне маловероятным. Представьте, что вы дважды запускаете руку в огромную коробку, где лежат лотерейные билеты со всеми возможными пятнадцатизначными номерами. Если вы вытянете два билета с абсолютно одинаковыми, за исключением последней цифры, номерами, то подумаете, что этому должно быть объяснение – либо билеты плохо перемешаны, либо кто-то вас разыграл.

Физики чувствуют то же по поводу подозрительно маленькой разности двух больших чисел, необходимой, чтобы придать правильную массу бозону Хиггса, – это словно бы требует объяснения. Но поскольку, когда речь идет о законах природы, мы не вытягиваем номера из коробки, мы лишены возможности сказать, насколько это вероятно или невероятно. Следовательно, то, что масса хиггсовского бозона требует объяснения, на самом деле ощущение, а не факт.

Число, будто бы нуждающееся в объяснении, физики называют «тонко настроенным» (fine-tuned), а теорию без тонко настроенных чисел – «естественной»[33]. Часто естественную теорию еще описывают как ту, которая использует только числа, близкие к единице. Эти два определения естественности одинаковы, ведь если два числа близки друг к другу, то разность между ними много меньше единицы.

Итак, числа очень большие, очень маленькие и очень близкие неестественны. В рамках Стандартной модели масса бозона Хиггса неестественна, что делает эту модель некрасивой.

Перейти на страницу:

Все книги серии Сенсация в науке

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература