Наша возможность игнорировать, что конкретно происходит с отдельными компонентами, относится не только к атомам. Свойства сложных частиц, таких как нейтроны и протоны, также почти не замечают движения их составляющих – кварков и глюонов. И когда мы описываем, например, как атомы шпыняют пыльцевые зерна на поверхности воды (броуновское движение), достаточно думать об атомах как о самостоятельных частицах и просто не учитывать, что они содержат что-то более мелкое. На еще больших масштабах все то же: планетные орбиты не зависят от строения планет, а – отодвигаемся еще дальше – на космологических масштабах даже с галактиками можно обращаться словно с частицами без составных элементов.
Это не значит, что происходящее на коротких расстояниях не оказывает вообще никакого влияния на то, что происходит на бо́льших, – просто детали не очень важны. Бо́льшие объекты состоят из меньших, и законы для более крупных вытекают из законов для более мелких. Неожиданность в том, что законы для крупных объектов столь просты.
Получается, значительная доля информации от меньших объектов не нужна для понимания более крупных. Мы говорим, что физика на коротких расстояниях «разъединяется» с физикой на бо́льших расстояниях, или что «масштабы разделяются». Это разделение масштабов и служит причиной, по которой вы можете идти по жизни, не зная ровным счетом ничего о кварках и бозоне Хиггса или – к ужасу профессоров физики во всем мире – не ведая, что представляет из себя квантовая теория поля.
Разделение масштабов имеет важные последствия. Оно означает, что мы можем сформулировать приблизительные законы природы, с неплохой точностью описывающие систему на некоем данном разрешении, а затем вносить в эти законы поправки по мере увеличения разрешения. Приблизительные законы, подходящие лишь для определенного разрешения, называются «эффективными».
При уменьшении разрешения, таким образом, часто целесообразно приспосабливаться к объектам, с которыми имеет дело теория, а также к свойствам, что мы им приписываем. При более низких разрешениях осмысленнее объединять в теории множество мелких компонентов в один объект побольше, присваивать этому крупному объекту имя и задавать его свойства. Вот как нам удается говорить об атомах и их оболочечной структуре, о молекулах и их колебательных модах, о металлах и их электропроводности – даже несмотря на то, что в базовой теории нет никаких атомов, нет металлов с их электропроводностью, а есть только элементарные частицы.
Стало быть, каждый уровень разрешения имеет свой собственный язык – формулировки, наиболее удобные на этом уровне. Мы называем такие зависящие от разрешения объекты и их свойства «эмерджентными». Процесс, который увязывает теорию на коротких расстояниях с теорией на больших расстояниях, именуется «огрублением» (
Рис. 3. Иллюстрация огрубления. Объекты при низком разрешении и законы для них (
Понятие «эмерджентный» противоположно понятию «фундаментальный», означающему, что объект дальше уже нельзя разложить на составные части, а его свойства – вывести из более точной теории. Фундаментальность – вопрос современного уровня знаний. Что фундаментально сегодня, возможно, уже не будет таковым завтра. А вот эмерджентное останется эмерджентным.
Вещество состоит из молекул, которые состоят из атомов, а те, в свою очередь, состоят из частиц Стандартной модели. Частицы Стандартной модели плюс пространство и время, насколько мы сейчас знаем, фундаментальны – не состоят из чего-то еще. В основаниях физики мы пытаемся выяснить, есть ли что-то еще фундаментальнее.
Как физика меня частенько обвиняют в редукционизме, как будто это некая опциональная позиция, которой можно было бы и не придерживаться. Но это не вымышленная концепция, а свойство природы, открывшееся в экспериментах. Мы вытащили эти уровни разрешения и их законы из бесчисленных наблюдений и обнаружили, что они описывают наш мир чрезвычайно хорошо. Эффективная теория поля говорит нам, что мы можем – в принципе – вывести теорию для меньших масштабов из теории для бо́льших, но не в обратную сторону.
Поскольку история науки потихоньку вскрыла эту иерархическую структуру, сегодня многие физики думают, что должна существовать одна фундаментальная теория, из которой выводится все остальное, – «теория всего». Такая надежда закономерна. Если бы вы сосали гигантский леденец сотню лет, разве вы не надеялись бы в итоге добраться до жвачки?
Все течет