Время покажет, так ли прекрасна природа на самых коротких расстояниях, как изобразил О’Брайен, но мы уже знаем, что его чудесный микроскоп останется художественным вымыслом. Разрешающая сила линз зависит от посредника, на которого они полагаются, – от излучения. Большие длины волн нечувствительны к малым расстояниям, как грубые, тяжелые ботинки нечувствительны к бороздкам на ступенях эскалатора. Разрешающая способность микроскопов ограничена длиной волны используемого излучения, и для того, чтобы исследовать меньшие расстояния, нам нужны более короткие волны.
Видимый свет имеет длины волн примерно от 400 до 700 нанометров[36]. Это приблизительно в 10 000 раз больше размера атома водорода. Поэтому видимый свет прекрасно подходит, если мы хотим изучать клетки, но его недостаточно, если мы намереваемся исследовать атомы. Мы можем достичь большего разрешения, используя излучение с меньшими длинами волн, например рентгеновские лучи, которые улучшают ситуацию по сравнению с видимым светом в 100–10 000 раз. Однако еще более коротковолновое излучение становится все труднее фокусировать и все сложнее с ним обращаться.
Чтобы еще улучшить разрешение, мы вынуждены обратиться к главному уроку квантовой механики: на самом деле нет волн и частиц. Вместо этого все во Вселенной (включая, насколько мы знаем, и ее саму) описывается волновой функцией, имеющей свойства как частиц, так и волн. Иногда эта волновая функция проявляется больше как волна, иногда – больше как частица. Но по своей сути она ни то ни другое – это новая самостоятельная категория.
Стало быть, строго говоря, нам не следует вообще произносить «элементарные частицы», потому-то один из моих профессоров и предложил вместо этого называть их «элементарными сущностями». Но это выражение никто не использует, и я тоже не хочу им вас мучить. Просто помните, что, когда бы физики ни упоминали частицы, они на самом деле имеют в виду математический объект, который зовется волновой функцией и не является ни частицей, ни волной, обладая свойствами обоих.
Волновая функция сама по себе не соответствует наблюдаемой величине, но по ее абсолютному значению мы можем вычислять вероятности для измерения физических наблюдаемых. Это лучшее, что мы можем сделать в квантовой теории: кроме особых случаев, результат отдельного измерения предсказать нельзя.
Квантовая теория помогает нам улучшить разрешение микроскопов, поскольку показывает, что чем тяжелее частица (сущность?) и чем быстрее она движется, тем меньше ее длина волны. Поэтому электронные микроскопы, в которых используются пучки электронов вместо света, достигают гораздо более высокого разрешения, чем световые. Даже если электроны разогнаны лишь умеренно благодаря использованию электрических и магнитных полей, такие микроскопы способны разрешать структуры размером с атом. В принципе, мы можем улучшить разрешение насколько угодно, еще сильнее разгоняя электроны. В этом главная причина того, что современная физика побуждает к конструированию все больших и больших ускорителей частиц и движима им сама: чем выше энергия столкновения, тем меньшие расстояния можно исследовать.
В отличие от световых микроскопов, в которых установлены зеркала и линзы, в ускорителях частиц используются электрические и магнитные поля, чтобы разгонять и фокусировать пучки электрически заряженных частиц. Однако по мере того, как мы увеличиваем скорость частиц, нужных для исследования некоего объекта, становится все труднее получать из измерения информацию. Это происходит потому, что частицы, предназначавшиеся для измерения исследуемого образца, начинают заметно его менять. Видимый свет, падающий на колечко лука, слабо на него влияет, разве что самую малость нагреет. Но пучок стремительных электронов, бьющих по тонкой мишени, при достаточно высокой энергии эту мишень разрушает. Тогда информацию о том, что произошло на очень коротких расстояниях, приходится искать в осколках. И это в целом и есть физика высоких энергий: попытки извлечь информацию из осколков от столкновений[37].
Расстояние, которое удается разрешить с помощью ускорителей, обратно пропорционально суммарной энергии сталкивающихся частиц. Хорошая подсказка для запоминания: энергия в 1 ГэВ (это 109 эВ, или 10–3 ТэВ, примерно масса протона) соответствует разрешенному расстоянию приблизительно в 1 фемтометр (10–15 м, примерно размер протона). Увеличение энергии на порядок означает уменьшение расстояния на порядок, и наоборот. Большой адронный коллайдер может достигать энергии столкновения максимально около 10 ТэВ. Это соответствует примерно 10–19 метра, самому короткому расстоянию, на котором мы когда-либо исследовали законы природы – пока.