Читаем Уродливая Вселенная. Как поиски красоты заводят физиков в тупик полностью

Стандартная модель – это пока наш лучший ответ на вопрос «Из чего мы сделаны?». Но она не объясняет гравитацию. Все потому, что специалистам по физике элементарных частиц не нужно учитывать гравитацию, делая предсказания для экспериментов на ускорителях: массы отдельных элементарных частиц ничтожны, поэтому незначительно и их гравитационное притяжение. Гравитация – преобладающая сила на больших расстояниях, а на коротких, исследуемых при столкновениях частиц, она пренебрежимо, почти неизмеримо, мала. Однако, в то время, как все остальные силы могут уравновесить друг друга (и уравновешивают), с гравитацией такое не проходит. Хотя для больших объектов все другие силы взаимно компенсируются и становятся незаметными, силы гравитации суммируются и, напротив, проявляют себя.

Еще гравитация стоит особняком, поскольку в наших действующих теориях это единственная (фундаментальная) сила, не обладающая квантовыми свойствами: она неквантуема, мы называем такие силы «классическими». Мы увидим, какие проблемы это доставляет, в седьмой главе, но сначала позвольте мне рассказать вам, что мы знаем о гравитации и как это знание обрели.

Пока специалисты по физике элементарных частиц строят все бо́льшие коллайдеры, чтобы прощупать все меньшие расстояния, астрономы конструируют все бо́льшие телескопы, чтобы заглянуть все глубже в космос[40]. Первые телескопы создавались бок о бок с первыми микроскопами, но затем эти приборы быстро обособились. И теория и эксперимент в этой области также развивались параллельно.

Поскольку от далеких звездных объектов до нас доходит очень мало света, астрономы конструировали телескопы со все большей апертурой, то есть с более крупными зеркалами, чтобы собирать как можно больше света. Однако этот подход вскоре исчерпал себя, ведь с громадными аппаратами стало невозможно управляться. Положение кардинально изменилось в середине XIX века – с появлением фотографических пластинок. Теперь астрономы имели возможность накапливать свет в течение длительного времени. Но, так как Земля вращается, большие выдержки приводили к смазыванию изображения, пока астрономы не снабдили телескопы специальным компенсирующим механизмом, что, в свою очередь, опять-таки требовало знаний о движении Земли. И так, чем больше астрономы узнавали о ночном небе, тем подкованнее становились по части его наблюдения.

Сегодня астрономы больше не запечатлевают изображения на фотопластинках, а используют ПЗС-матрицы, электронные сердца цифровых камер. Современные телескопы так чувствительны, что способны регистрировать единичные фотоны, а выдержки иногда достигают нескольких миллионов секунд (больше недели)[41]. И конечно же, телескопы по-прежнему становятся все больше: теперь у нас есть особые механизмы, которые двигают огромные зеркала, оснащенные тысячами маленьких приводов, чтобы предотвращать деформации из-за сейсмических и температурных колебаний. Суперкомпьютеры и головокружительно точное измерение времени позволили телескопам, отстоящим друг от друга на большие расстояния, работать сообща, что, по сути, создает еще бо́льшие телескопы. Чтобы сладить с атмосферными флуктуациями, размывающими изображения, астрономы теперь используют так называемую адаптивную оптику, компьютерную программу, перенастраивающую телескоп в ответ на атмосферные изменения. Или вообще исключают любые искажения из-за атмосферы, устанавливая телескопы на спутниках и запуская в открытый космос.

Мы расширили свои возможности от видимого света до длинноволнового излучения инфракрасного, микроволнового и радиодиапазонов и в другую сторону до коротковолнового рентгеновского и гамма-излучения. И свет – не единственный связной, используемый нами сегодня для исследования космоса. Другие частицы, включая нейтрино, электроны и протоны, тоже рассказывают свои истории об источниках своего происхождения и о перипетиях на своем пути к Земле. Самое последнее достижение астрономии: первая прямая регистрация гравитационных волн, возмущений самой ткани пространства-времени. Эти волны несут информацию о зачастую суровых событиях, что породили их, – таких как слияние черных дыр.

Благодаря комбинации всех этих методов астрономы дерзнули заглянуть в прошлое во времена, когда Вселенной было лишь 300 000 лет от роду, и в дали порядка 10 миллиардов световых лет от нас. Данные коренным образом отличаются от тех, что дает физика в коллайдерах. Но для нас, теоретиков, задача та же: объяснить измерения.

Согласованная космологическая модель

Наше лучшее на сегодняшний день объяснение данных, полученных астрономами, – так называемая согласованная космологическая модель[42]. В ней используется математика общей теории относительности, согласно которой мы живем в трех пространственных измерениях и одном временно́м, да к тому же это пространство-время искривлено.

Перейти на страницу:

Все книги серии Сенсация в науке

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература