Читаем Уродливая Вселенная. Как поиски красоты заводят физиков в тупик полностью

Объективно измерять простоту помогает так называемая вычислительная сложность, которая определяется длиной кода компьютерной программы, производящей вычисления[57]. Вычислительная сложность, в принципе, измерима для любой теории, которая может быть переведена в компьютерный код. Сюда относятся и теории из современной физики. Но сами мы не компьютеры, так что вычислительная сложность – не та оценка, которую мы в действительности используем. Человеческое понимание простоты преимущественно основывается на легкости в применении, а она, в свою очередь, тесно связана с нашей способностью уловить идею и удерживать ее в голове, раскручивая, до тех пор, пока не родится научная статья.

Чтобы добиться простоты новых, предполагаемых законов природы, теоретики сейчас стараются минимизировать набор допущений. Этого можно достичь, сокращая число параметров, полей или вообще аксиом теории. На сегодня самые распространенные способы сделать это – добавление симметрий или объединение.

Эйнштейн тоже мечтал о том, чтобы фундаментальная теория не содержала необъяснимых параметров:

…Природа устроена так, что ее законы в большой мере определяются уже чисто логическими требованиями настолько, что в выражения этих законов входят только постоянные, допускающие теоретическое определение (то есть такие постоянные, что их численных значений нельзя менять, не разрушая теории)70[58].

Эта мечта и по сей день направляет исследования. Однако мы не знаем, обязательно ли более фундаментальные теории должны быть проще. Предположение, что более фундаментальная теория должна быть еще и проще – по крайней мере восприниматься проще – это надежда, а не что-то такое, чего у нас на самом деле есть причины ожидать.

Естественность

В отличие от простоты, с позиций естественности оценивается не количество допущений, а их тип. Это попытка избавиться от человеческого фактора – требование, чтобы в «естественной» теории не использовались тщательно подобранные допущения.

Техническая естественность отличается от общей тем, что применяется только к квантовым теориям поля. Но у них обеих одинаковый фундамент: предположений, которые вряд ли могли быть выполнены случайно, нужно избегать.

Правда, критерий естественности бесполезен без других допущений – допущений, которые требуют делать необъяснимый выбор, тем самым возвращая в игру избирательный подход. Проблема в том, что у чего-либо есть бесконечное множество разных способов оказаться случайным, а потому отсылка к случайности уже сама по себе требует выбора.

Давайте разберем такой пример. Если у вас есть обычный игральный кубик, вероятность выпадения любого из чисел на нем одинакова: 1/6. Но если кубик ваш причудливой формы, то вероятность для каждого числа может быть какая-то своя. Мы говорим, что кубик причудливой формы имеет иное «распределение вероятностей», то есть функцию, зашифровывающую вероятности каждого возможного исхода броска. Функция может быть любой, лишь бы сумма вероятностей всех исходов давала 1.

Когда мы говорим: что-то случайно – без каких-либо уточнений, обычно мы подразумеваем равномерное распределение вероятностей, то есть распределение с равными вероятностями для всех исходов, как для обычного игрального кубика. Но почему распределение вероятностей для параметров теории должно быть равномерным? У нас есть только один набор параметров, описывающий наши наблюдения. Это то же самое, как если бы кто-то сообщил нам результат одного броска кубика. Это ведь ничего не говорит о его форме. Равномерное распределение, как и обычный, симметричный кубик, может, и выглядит симпатично, но это ровно тот тип человеческого выбора, от которого естественность пытается избавиться[59].

Хуже того, даже если вы выберете по своему вкусу распределение вероятностей, естественность останется бессмысленным критерием, ведь она немедленно низведет в отряд неестественных все теории, какие мы только можем помыслить. А все потому, что требования естественности сейчас избирательно применяют лишь к одному типу допущений: к безразмерным величинам. Однако при разработке теорий мы используем и много других допущений, которые подбираются «исключительно» для того, чтобы объяснить наблюдения. Просто об этом обычно не говорят.

Перейти на страницу:

Все книги серии Сенсация в науке

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература