Читаем Уродливая Вселенная. Как поиски красоты заводят физиков в тупик полностью

ВКРАТЦЕ

• Физики-теоретики используют простоту, естественность и элегантность в качестве критериев при разработке теорий.

• Учитывая, что сейчас естественность вступила в противоречие с наблюдениями, многие физики считают, что единственной альтернативой «естественным» законам природы служит то, что мы живем в мультивселенной.

• Но и естественность, и мультивселенная требуют метатеории, которая позволяла бы вычислить вероятность того, что мы наблюдаем мир таким, каков он есть, – а это противоречит принципу простоты.

• Неясно, какую проблему естественность или мультивселенная вообще пытаются решить, ведь для того, чтобы объяснить наблюдения, не нужна ни одна, ни вторая.

• Не все считают мультивселенную красивой, а значит, восприятие красоты может меняться и меняется; популярность этих субъективных оценок нельзя объяснить только лишь красотой.

Глава 6

Непостижимая постижимость квантовой механики

В которой я раздумываю, какова разница между математикой и магией.

Всё великолепно, но все недовольны

Квантовая механика исключительно успешна. Она объясняет атомный мир и субатомный с высочайшей точностью. Мы проверяли ее вдоль и поперек – и не нашли никаких изъянов. Квантовая механика оказывалась верна, верна и еще раз верна. Но несмотря на это, а может, как раз поэтому, она никому не нравится. Мы попросту с ней свыклись[71].

В обзоре 2015 года в Nature Physics Санду Попеску назвал аксиомы квантовой механики «очень математическими», «физически малопонятными» и «гораздо менее естественными, интуитивными и “физическими”, чем аксиомы других теорий»96. Он выражает общее умонастроение. Сет Ллойд, известный своей работой над квантовыми вычислениями, согласен, что «квантовая механика совершенно контринтуитивна»97. И Стивен Вайнберг в своих лекциях предупреждает читателя, что «идеи квантовой механики серьезно отклоняются от обычных интуитивных представлений человека»98.

Дело не в том, что квантовая механика технически сложна – она не такая. Математика квантовой механики использует уравнения, для которых у нас есть простые техники решения, что резко контрастирует с уравнениями общей теории относительности – вот их-то страшно трудно решать. Нет, не в сложности дело, а в том, что квантовая механика кажется какой-то неправильной. Она возмущает.

Все начинается с волновой функции. Это математический объект, описывающий систему, с которой вы имеете дело. Волновую функцию часто называют состоянием системы, но – вот тут-то и кроется неприятность – саму по себе ее нельзя наблюдать ни в одном мыслимом эксперименте. Волновая функция чисто вспомогательна: с ее помощью мы вычисляем вероятности для измерения определенных наблюдаемых величин.

Это означает, однако, что после измерения волновая функция должна быть изменена таким образом, чтобы измеренное состояние приобрело вероятность, равную 1. Это изменение – иногда называемое «коллапсом» или «редукцией» – мгновенно: оно происходит одномоментно для всей волновой функции, независимо от того, насколько далеко та простиралась. Если волновая функция простиралась между двумя островами, измерение состояния на одном конце определяет вероятность на другом.

Это не какой-то мысленный эксперимент, его на самом деле провели.

Летом 2008 года группа Антона Цайлингера собралась на Канарских островах, чтобы установить мировой рекорд по дальности квантовой телепортации 99[72]. На острове Пальма они с помощью лазера сгенерировали 19 917 фотонных пар: в каждой из них суммарная поляризация равнялась нулю, но поляризация отдельных фотонов была неизвестна. Коллеги Цайлингера послали по одному фотону из каждой пары на приемник, находящийся на острове Тенерифе, за 144 километра. Другой фотон из каждой пары перемещался на 6 километров по оптоволоконному кабелю, свернутому в спираль, на острове Пальма. А затем экспериментаторы измеряли поляризацию на обоих концах.

Перейти на страницу:

Все книги серии Сенсация в науке

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература